Metamath Proof Explorer


Theorem dipsubdir

Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipsubdir.1 X = BaseSet U
ipsubdir.3 M = - v U
ipsubdir.7 P = 𝑖OLD U
Assertion dipsubdir U CPreHil OLD A X B X C X A M B P C = A P C B P C

Proof

Step Hyp Ref Expression
1 ipsubdir.1 X = BaseSet U
2 ipsubdir.3 M = - v U
3 ipsubdir.7 P = 𝑖OLD U
4 idd U CPreHil OLD A X A X
5 phnv U CPreHil OLD U NrmCVec
6 neg1cn 1
7 eqid 𝑠OLD U = 𝑠OLD U
8 1 7 nvscl U NrmCVec 1 B X -1 𝑠OLD U B X
9 6 8 mp3an2 U NrmCVec B X -1 𝑠OLD U B X
10 5 9 sylan U CPreHil OLD B X -1 𝑠OLD U B X
11 10 ex U CPreHil OLD B X -1 𝑠OLD U B X
12 idd U CPreHil OLD C X C X
13 4 11 12 3anim123d U CPreHil OLD A X B X C X A X -1 𝑠OLD U B X C X
14 13 imp U CPreHil OLD A X B X C X A X -1 𝑠OLD U B X C X
15 eqid + v U = + v U
16 1 15 3 dipdir U CPreHil OLD A X -1 𝑠OLD U B X C X A + v U -1 𝑠OLD U B P C = A P C + -1 𝑠OLD U B P C
17 14 16 syldan U CPreHil OLD A X B X C X A + v U -1 𝑠OLD U B P C = A P C + -1 𝑠OLD U B P C
18 1 15 7 2 nvmval U NrmCVec A X B X A M B = A + v U -1 𝑠OLD U B
19 5 18 syl3an1 U CPreHil OLD A X B X A M B = A + v U -1 𝑠OLD U B
20 19 3adant3r3 U CPreHil OLD A X B X C X A M B = A + v U -1 𝑠OLD U B
21 20 oveq1d U CPreHil OLD A X B X C X A M B P C = A + v U -1 𝑠OLD U B P C
22 1 7 3 dipass U CPreHil OLD 1 B X C X -1 𝑠OLD U B P C = -1 B P C
23 6 22 mp3anr1 U CPreHil OLD B X C X -1 𝑠OLD U B P C = -1 B P C
24 1 3 dipcl U NrmCVec B X C X B P C
25 24 3expb U NrmCVec B X C X B P C
26 5 25 sylan U CPreHil OLD B X C X B P C
27 26 mulm1d U CPreHil OLD B X C X -1 B P C = B P C
28 23 27 eqtrd U CPreHil OLD B X C X -1 𝑠OLD U B P C = B P C
29 28 3adantr1 U CPreHil OLD A X B X C X -1 𝑠OLD U B P C = B P C
30 29 oveq2d U CPreHil OLD A X B X C X A P C + -1 𝑠OLD U B P C = A P C + B P C
31 1 3 dipcl U NrmCVec A X C X A P C
32 31 3adant3r2 U NrmCVec A X B X C X A P C
33 24 3adant3r1 U NrmCVec A X B X C X B P C
34 32 33 negsubd U NrmCVec A X B X C X A P C + B P C = A P C B P C
35 5 34 sylan U CPreHil OLD A X B X C X A P C + B P C = A P C B P C
36 30 35 eqtr2d U CPreHil OLD A X B X C X A P C B P C = A P C + -1 𝑠OLD U B P C
37 17 21 36 3eqtr4d U CPreHil OLD A X B X C X A M B P C = A P C B P C