Metamath Proof Explorer


Theorem dirge

Description: For any two elements of a directed set, there exists a third element greater than or equal to both. Note that this does not say that the two elements have aleast upper bound. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Hypothesis dirge.1 X = dom R
Assertion dirge R DirRel A X B X x X A R x B R x

Proof

Step Hyp Ref Expression
1 dirge.1 X = dom R
2 dirdm R DirRel dom R = R
3 1 2 syl5eq R DirRel X = R
4 3 eleq2d R DirRel A X A R
5 3 eleq2d R DirRel B X B R
6 4 5 anbi12d R DirRel A X B X A R B R
7 eqid R = R
8 7 isdir R DirRel R DirRel Rel R I R R R R R R × R R -1 R
9 8 ibi R DirRel Rel R I R R R R R R × R R -1 R
10 9 simprrd R DirRel R × R R -1 R
11 codir R × R R -1 R y R z R x y R x z R x
12 10 11 sylib R DirRel y R z R x y R x z R x
13 breq1 y = A y R x A R x
14 13 anbi1d y = A y R x z R x A R x z R x
15 14 exbidv y = A x y R x z R x x A R x z R x
16 breq1 z = B z R x B R x
17 16 anbi2d z = B A R x z R x A R x B R x
18 17 exbidv z = B x A R x z R x x A R x B R x
19 15 18 rspc2v A R B R y R z R x y R x z R x x A R x B R x
20 12 19 syl5com R DirRel A R B R x A R x B R x
21 6 20 sylbid R DirRel A X B X x A R x B R x
22 reldir R DirRel Rel R
23 relelrn Rel R A R x x ran R
24 22 23 sylan R DirRel A R x x ran R
25 24 ex R DirRel A R x x ran R
26 ssun2 ran R dom R ran R
27 dmrnssfld dom R ran R R
28 26 27 sstri ran R R
29 28 3 sseqtrrid R DirRel ran R X
30 29 sseld R DirRel x ran R x X
31 25 30 syld R DirRel A R x x X
32 31 adantrd R DirRel A R x B R x x X
33 32 ancrd R DirRel A R x B R x x X A R x B R x
34 33 eximdv R DirRel x A R x B R x x x X A R x B R x
35 df-rex x X A R x B R x x x X A R x B R x
36 34 35 syl6ibr R DirRel x A R x B R x x X A R x B R x
37 21 36 syld R DirRel A X B X x X A R x B R x
38 37 3impib R DirRel A X B X x X A R x B R x