Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum.u |
|
5 |
|
rpvmasum.b |
|
6 |
|
rpvmasum.t |
|
7 |
|
nnex |
|
8 |
|
inss1 |
|
9 |
|
prmssnn |
|
10 |
8 9
|
sstri |
|
11 |
|
ssdomg |
|
12 |
7 10 11
|
mp2 |
|
13 |
12
|
a1i |
|
14 |
|
logno1 |
|
15 |
3
|
adantr |
|
16 |
15
|
phicld |
|
17 |
16
|
nnred |
|
18 |
17
|
adantr |
|
19 |
|
simpr |
|
20 |
|
inss2 |
|
21 |
|
ssfi |
|
22 |
19 20 21
|
sylancl |
|
23 |
|
elinel2 |
|
24 |
|
simpr |
|
25 |
10 24
|
sselid |
|
26 |
25
|
nnrpd |
|
27 |
|
relogcl |
|
28 |
26 27
|
syl |
|
29 |
28 25
|
nndivred |
|
30 |
23 29
|
sylan2 |
|
31 |
22 30
|
fsumrecl |
|
32 |
31
|
adantr |
|
33 |
|
rpssre |
|
34 |
17
|
recnd |
|
35 |
|
o1const |
|
36 |
33 34 35
|
sylancr |
|
37 |
33
|
a1i |
|
38 |
|
1red |
|
39 |
19 29
|
fsumrecl |
|
40 |
|
log1 |
|
41 |
25
|
nnge1d |
|
42 |
|
1rp |
|
43 |
|
logleb |
|
44 |
42 26 43
|
sylancr |
|
45 |
41 44
|
mpbid |
|
46 |
40 45
|
eqbrtrrid |
|
47 |
28 26 46
|
divge0d |
|
48 |
20
|
a1i |
|
49 |
19 29 47 48
|
fsumless |
|
50 |
49
|
adantr |
|
51 |
37 32 38 39 50
|
ello1d |
|
52 |
|
0red |
|
53 |
23 47
|
sylan2 |
|
54 |
22 30 53
|
fsumge0 |
|
55 |
54
|
adantr |
|
56 |
32 52 55
|
o1lo12 |
|
57 |
51 56
|
mpbird |
|
58 |
18 32 36 57
|
o1mul2 |
|
59 |
17 31
|
remulcld |
|
60 |
59
|
recnd |
|
61 |
60
|
adantr |
|
62 |
|
relogcl |
|
63 |
62
|
adantl |
|
64 |
63
|
recnd |
|
65 |
1 2 3 4 5 6
|
rplogsum |
|
66 |
65
|
adantr |
|
67 |
61 64 66
|
o1dif |
|
68 |
58 67
|
mpbid |
|
69 |
68
|
ex |
|
70 |
14 69
|
mtoi |
|
71 |
|
nnenom |
|
72 |
|
sdomentr |
|
73 |
71 72
|
mpan2 |
|
74 |
|
isfinite2 |
|
75 |
73 74
|
syl |
|
76 |
70 75
|
nsyl |
|
77 |
|
bren2 |
|
78 |
13 76 77
|
sylanbrc |
|