Metamath Proof Explorer


Theorem dirker2re

Description: The Dirichlet Kernel value is a real if the argument is not a multiple of π . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion dirker2re N S ¬ S mod 2 π = 0 sin N + 1 2 S 2 π sin S 2

Proof

Step Hyp Ref Expression
1 nnre N N
2 1 ad2antrr N S ¬ S mod 2 π = 0 N
3 1red N S ¬ S mod 2 π = 0 1
4 3 rehalfcld N S ¬ S mod 2 π = 0 1 2
5 2 4 readdcld N S ¬ S mod 2 π = 0 N + 1 2
6 simplr N S ¬ S mod 2 π = 0 S
7 5 6 remulcld N S ¬ S mod 2 π = 0 N + 1 2 S
8 7 resincld N S ¬ S mod 2 π = 0 sin N + 1 2 S
9 2re 2
10 9 a1i N S ¬ S mod 2 π = 0 2
11 pire π
12 11 a1i N S ¬ S mod 2 π = 0 π
13 10 12 remulcld N S ¬ S mod 2 π = 0 2 π
14 6 rehalfcld N S ¬ S mod 2 π = 0 S 2
15 14 resincld N S ¬ S mod 2 π = 0 sin S 2
16 13 15 remulcld N S ¬ S mod 2 π = 0 2 π sin S 2
17 2cnd S ¬ S mod 2 π = 0 2
18 picn π
19 18 a1i S ¬ S mod 2 π = 0 π
20 17 19 mulcld S ¬ S mod 2 π = 0 2 π
21 recn S S
22 21 adantr S ¬ S mod 2 π = 0 S
23 22 halfcld S ¬ S mod 2 π = 0 S 2
24 23 sincld S ¬ S mod 2 π = 0 sin S 2
25 2ne0 2 0
26 25 a1i S ¬ S mod 2 π = 0 2 0
27 0re 0
28 pipos 0 < π
29 27 28 gtneii π 0
30 29 a1i S ¬ S mod 2 π = 0 π 0
31 17 19 26 30 mulne0d S ¬ S mod 2 π = 0 2 π 0
32 22 17 19 26 30 divdiv1d S ¬ S mod 2 π = 0 S 2 π = S 2 π
33 simpr S ¬ S mod 2 π = 0 ¬ S mod 2 π = 0
34 2rp 2 +
35 pirp π +
36 rpmulcl 2 + π + 2 π +
37 34 35 36 mp2an 2 π +
38 mod0 S 2 π + S mod 2 π = 0 S 2 π
39 37 38 mpan2 S S mod 2 π = 0 S 2 π
40 39 adantr S ¬ S mod 2 π = 0 S mod 2 π = 0 S 2 π
41 33 40 mtbid S ¬ S mod 2 π = 0 ¬ S 2 π
42 32 41 eqneltrd S ¬ S mod 2 π = 0 ¬ S 2 π
43 sineq0 S 2 sin S 2 = 0 S 2 π
44 23 43 syl S ¬ S mod 2 π = 0 sin S 2 = 0 S 2 π
45 42 44 mtbird S ¬ S mod 2 π = 0 ¬ sin S 2 = 0
46 45 neqned S ¬ S mod 2 π = 0 sin S 2 0
47 20 24 31 46 mulne0d S ¬ S mod 2 π = 0 2 π sin S 2 0
48 47 adantll N S ¬ S mod 2 π = 0 2 π sin S 2 0
49 8 16 48 redivcld N S ¬ S mod 2 π = 0 sin N + 1 2 S 2 π sin S 2