Step |
Hyp |
Ref |
Expression |
1 |
|
dirkercncf.d |
|
2 |
1
|
dirkerf |
|
3 |
|
ax-resscn |
|
4 |
3
|
a1i |
|
5 |
2 4
|
fssd |
|
6 |
5
|
ad2antrr |
|
7 |
|
oveq1 |
|
8 |
7
|
eqeq1d |
|
9 |
|
oveq2 |
|
10 |
9
|
fveq2d |
|
11 |
|
oveq1 |
|
12 |
11
|
fveq2d |
|
13 |
12
|
oveq2d |
|
14 |
10 13
|
oveq12d |
|
15 |
8 14
|
ifbieq2d |
|
16 |
15
|
cbvmptv |
|
17 |
16
|
mpteq2i |
|
18 |
1 17
|
eqtri |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
simpll |
|
24 |
|
simplr |
|
25 |
|
simpr |
|
26 |
18 19 20 21 22 23 24 25
|
dirkercncflem3 |
|
27 |
3
|
jctl |
|
28 |
27
|
ad2antlr |
|
29 |
|
eqid |
|
30 |
29
|
tgioo2 |
|
31 |
29 30
|
cnplimc |
|
32 |
28 31
|
syl |
|
33 |
6 26 32
|
mpbir2and |
|
34 |
29
|
cnfldtop |
|
35 |
34
|
a1i |
|
36 |
2
|
ad2antrr |
|
37 |
3
|
a1i |
|
38 |
|
retopon |
|
39 |
38
|
toponunii |
|
40 |
29
|
cnfldtopon |
|
41 |
40
|
toponunii |
|
42 |
39 41
|
cnprest2 |
|
43 |
35 36 37 42
|
syl3anc |
|
44 |
33 43
|
mpbid |
|
45 |
30
|
eqcomi |
|
46 |
45
|
a1i |
|
47 |
46
|
oveq2d |
|
48 |
47
|
fveq1d |
|
49 |
44 48
|
eleqtrd |
|
50 |
|
simpll |
|
51 |
|
simplr |
|
52 |
|
neqne |
|
53 |
52
|
adantl |
|
54 |
|
eqid |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
|
eqid |
|
58 |
18 50 51 53 54 55 56 57
|
dirkercncflem4 |
|
59 |
49 58
|
pm2.61dan |
|
60 |
59
|
ralrimiva |
|
61 |
|
cncnp |
|
62 |
38 38 61
|
mp2an |
|
63 |
2 60 62
|
sylanbrc |
|
64 |
29 30 30
|
cncfcn |
|
65 |
3 3 64
|
mp2an |
|
66 |
63 65
|
eleqtrrdi |
|