Step |
Hyp |
Ref |
Expression |
1 |
|
dirkercncflem1.a |
|
2 |
|
dirkercncflem1.b |
|
3 |
|
dirkercncflem1.y |
|
4 |
|
dirkercncflem1.ymod0 |
|
5 |
|
pire |
|
6 |
5
|
a1i |
|
7 |
3 6
|
resubcld |
|
8 |
7
|
rexrd |
|
9 |
1 8
|
eqeltrid |
|
10 |
3 6
|
readdcld |
|
11 |
10
|
rexrd |
|
12 |
2 11
|
eqeltrid |
|
13 |
|
pipos |
|
14 |
|
ltsubpos |
|
15 |
13 14
|
mpbii |
|
16 |
6 3 15
|
syl2anc |
|
17 |
1 16
|
eqbrtrid |
|
18 |
|
ltaddpos |
|
19 |
13 18
|
mpbii |
|
20 |
6 3 19
|
syl2anc |
|
21 |
20 2
|
breqtrrdi |
|
22 |
9 12 3 17 21
|
eliood |
|
23 |
|
eldifi |
|
24 |
23
|
elioored |
|
25 |
24
|
adantl |
|
26 |
25
|
recnd |
|
27 |
|
2cnd |
|
28 |
|
picn |
|
29 |
28
|
a1i |
|
30 |
|
2ne0 |
|
31 |
30
|
a1i |
|
32 |
5 13
|
gt0ne0ii |
|
33 |
32
|
a1i |
|
34 |
26 27 29 31 33
|
divdiv1d |
|
35 |
|
2rp |
|
36 |
35
|
a1i |
|
37 |
|
pirp |
|
38 |
37
|
a1i |
|
39 |
36 38
|
rpmulcld |
|
40 |
|
mod0 |
|
41 |
3 39 40
|
syl2anc |
|
42 |
4 41
|
mpbid |
|
43 |
|
peano2zm |
|
44 |
42 43
|
syl |
|
45 |
44
|
ad2antrr |
|
46 |
44
|
zred |
|
47 |
46
|
adantr |
|
48 |
1 7
|
eqeltrid |
|
49 |
48 39
|
rerpdivcld |
|
50 |
49
|
adantr |
|
51 |
39
|
rpred |
|
52 |
51
|
adantr |
|
53 |
39
|
rpne0d |
|
54 |
53
|
adantr |
|
55 |
25 52 54
|
redivcld |
|
56 |
51
|
recnd |
|
57 |
56 53
|
dividd |
|
58 |
57
|
eqcomd |
|
59 |
58
|
oveq2d |
|
60 |
3
|
recnd |
|
61 |
60 56 56 53
|
divsubdird |
|
62 |
59 61
|
eqtr4d |
|
63 |
3 51
|
resubcld |
|
64 |
28
|
mulid2i |
|
65 |
64
|
eqcomi |
|
66 |
|
1lt2 |
|
67 |
|
1re |
|
68 |
|
2re |
|
69 |
67 68 5 13
|
ltmul1ii |
|
70 |
66 69
|
mpbi |
|
71 |
65 70
|
eqbrtri |
|
72 |
71
|
a1i |
|
73 |
6 51 3 72
|
ltsub2dd |
|
74 |
73 1
|
breqtrrdi |
|
75 |
63 48 39 74
|
ltdiv1dd |
|
76 |
62 75
|
eqbrtrd |
|
77 |
76
|
adantr |
|
78 |
48
|
adantr |
|
79 |
39
|
adantr |
|
80 |
23
|
adantl |
|
81 |
9
|
adantr |
|
82 |
12
|
adantr |
|
83 |
|
elioo2 |
|
84 |
81 82 83
|
syl2anc |
|
85 |
80 84
|
mpbid |
|
86 |
85
|
simp2d |
|
87 |
78 25 79 86
|
ltdiv1dd |
|
88 |
47 50 55 77 87
|
lttrd |
|
89 |
88
|
adantr |
|
90 |
24
|
ad2antlr |
|
91 |
3
|
ad2antrr |
|
92 |
39
|
ad2antrr |
|
93 |
|
simpr |
|
94 |
90 91 92 93
|
ltdiv1dd |
|
95 |
60 56 53
|
divcld |
|
96 |
95
|
adantr |
|
97 |
|
1cnd |
|
98 |
96 97
|
npcand |
|
99 |
98
|
eqcomd |
|
100 |
99
|
adantr |
|
101 |
94 100
|
breqtrd |
|
102 |
|
btwnnz |
|
103 |
45 89 101 102
|
syl3anc |
|
104 |
42
|
ad2antrr |
|
105 |
3
|
ad2antrr |
|
106 |
25
|
adantr |
|
107 |
79
|
adantr |
|
108 |
25
|
adantr |
|
109 |
3
|
ad2antrr |
|
110 |
|
simpr |
|
111 |
|
eldifsni |
|
112 |
111
|
necomd |
|
113 |
112
|
ad2antlr |
|
114 |
108 109 110 113
|
leneltd |
|
115 |
114
|
stoic1a |
|
116 |
105 106
|
ltnled |
|
117 |
115 116
|
mpbird |
|
118 |
105 106 107 117
|
ltdiv1dd |
|
119 |
2 10
|
eqeltrid |
|
120 |
119 39
|
rerpdivcld |
|
121 |
120
|
adantr |
|
122 |
3 39
|
rerpdivcld |
|
123 |
122
|
adantr |
|
124 |
|
1red |
|
125 |
123 124
|
readdcld |
|
126 |
119
|
adantr |
|
127 |
85
|
simp3d |
|
128 |
25 126 79 127
|
ltdiv1dd |
|
129 |
2
|
oveq1i |
|
130 |
28
|
a1i |
|
131 |
60 130 56 53
|
divdird |
|
132 |
6 39
|
rerpdivcld |
|
133 |
|
1red |
|
134 |
|
2cn |
|
135 |
134 28
|
mulcomi |
|
136 |
135
|
oveq2i |
|
137 |
28 32
|
pm3.2i |
|
138 |
|
2cnne0 |
|
139 |
|
divdiv1 |
|
140 |
28 137 138 139
|
mp3an |
|
141 |
28 32
|
dividi |
|
142 |
141
|
oveq1i |
|
143 |
136 140 142
|
3eqtr2i |
|
144 |
|
halflt1 |
|
145 |
143 144
|
eqbrtri |
|
146 |
145
|
a1i |
|
147 |
132 133 122 146
|
ltadd2dd |
|
148 |
131 147
|
eqbrtrd |
|
149 |
129 148
|
eqbrtrid |
|
150 |
149
|
adantr |
|
151 |
55 121 125 128 150
|
lttrd |
|
152 |
151
|
adantr |
|
153 |
|
btwnnz |
|
154 |
104 118 152 153
|
syl3anc |
|
155 |
103 154
|
pm2.61dan |
|
156 |
34 155
|
eqneltrd |
|
157 |
26
|
halfcld |
|
158 |
|
sineq0 |
|
159 |
157 158
|
syl |
|
160 |
156 159
|
mtbird |
|
161 |
160
|
neqned |
|
162 |
34
|
oveq1d |
|
163 |
42
|
adantr |
|
164 |
1
|
a1i |
|
165 |
164
|
oveq1d |
|
166 |
60 130
|
npcand |
|
167 |
165 166
|
eqtr2d |
|
168 |
167
|
oveq1d |
|
169 |
48
|
recnd |
|
170 |
169 130 56 53
|
divdird |
|
171 |
130
|
mulid1d |
|
172 |
171
|
eqcomd |
|
173 |
|
2cnd |
|
174 |
173 130
|
mulcomd |
|
175 |
172 174
|
oveq12d |
|
176 |
|
1cnd |
|
177 |
30
|
a1i |
|
178 |
32
|
a1i |
|
179 |
176 173 130 177 178
|
divcan5d |
|
180 |
175 179
|
eqtrd |
|
181 |
180
|
oveq2d |
|
182 |
168 170 181
|
3eqtrd |
|
183 |
182
|
adantr |
|
184 |
124
|
rehalfcld |
|
185 |
50 55 184 87
|
ltadd1dd |
|
186 |
183 185
|
eqbrtrd |
|
187 |
55 121 184 128
|
ltadd1dd |
|
188 |
129
|
a1i |
|
189 |
188
|
oveq1d |
|
190 |
180
|
oveq2d |
|
191 |
131 190
|
eqtrd |
|
192 |
191
|
oveq1d |
|
193 |
176
|
halfcld |
|
194 |
95 193 193
|
addassd |
|
195 |
176
|
2halvesd |
|
196 |
195
|
oveq2d |
|
197 |
194 196
|
eqtrd |
|
198 |
189 192 197
|
3eqtrd |
|
199 |
198
|
adantr |
|
200 |
187 199
|
breqtrd |
|
201 |
|
btwnnz |
|
202 |
163 186 200 201
|
syl3anc |
|
203 |
162 202
|
eqneltrd |
|
204 |
|
coseq0 |
|
205 |
157 204
|
syl |
|
206 |
203 205
|
mtbird |
|
207 |
206
|
neqned |
|
208 |
161 207
|
jca |
|
209 |
208
|
ralrimiva |
|
210 |
22 209
|
jca |
|