Metamath Proof Explorer


Theorem dirkerdenne0

Description: The Dirichlet Kernel denominator is never 0 . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion dirkerdenne0 S ¬ S mod 2 π = 0 2 π sin S 2 0

Proof

Step Hyp Ref Expression
1 2cnd S ¬ S mod 2 π = 0 2
2 picn π
3 2 a1i S ¬ S mod 2 π = 0 π
4 1 3 mulcld S ¬ S mod 2 π = 0 2 π
5 recn S S
6 5 adantr S ¬ S mod 2 π = 0 S
7 6 halfcld S ¬ S mod 2 π = 0 S 2
8 7 sincld S ¬ S mod 2 π = 0 sin S 2
9 2ne0 2 0
10 9 a1i S ¬ S mod 2 π = 0 2 0
11 0re 0
12 pipos 0 < π
13 11 12 gtneii π 0
14 13 a1i S ¬ S mod 2 π = 0 π 0
15 1 3 10 14 mulne0d S ¬ S mod 2 π = 0 2 π 0
16 6 1 3 10 14 divdiv1d S ¬ S mod 2 π = 0 S 2 π = S 2 π
17 simpr S ¬ S mod 2 π = 0 ¬ S mod 2 π = 0
18 2rp 2 +
19 pirp π +
20 rpmulcl 2 + π + 2 π +
21 18 19 20 mp2an 2 π +
22 mod0 S 2 π + S mod 2 π = 0 S 2 π
23 21 22 mpan2 S S mod 2 π = 0 S 2 π
24 23 adantr S ¬ S mod 2 π = 0 S mod 2 π = 0 S 2 π
25 17 24 mtbid S ¬ S mod 2 π = 0 ¬ S 2 π
26 16 25 eqneltrd S ¬ S mod 2 π = 0 ¬ S 2 π
27 sineq0 S 2 sin S 2 = 0 S 2 π
28 7 27 syl S ¬ S mod 2 π = 0 sin S 2 = 0 S 2 π
29 26 28 mtbird S ¬ S mod 2 π = 0 ¬ sin S 2 = 0
30 29 neqned S ¬ S mod 2 π = 0 sin S 2 0
31 4 8 15 30 mulne0d S ¬ S mod 2 π = 0 2 π sin S 2 0