Metamath Proof Explorer


Theorem dirkerper

Description: the Dirichlet Kernel has period 2 _pi . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dirkerper.1 D = n y if y mod 2 π = 0 2 n + 1 2 π sin n + 1 2 y 2 π sin y 2
dirkerper.2 T = 2 π
Assertion dirkerper N x D N x + T = D N x

Proof

Step Hyp Ref Expression
1 dirkerper.1 D = n y if y mod 2 π = 0 2 n + 1 2 π sin n + 1 2 y 2 π sin y 2
2 dirkerper.2 T = 2 π
3 2 eqcomi 2 π = T
4 3 oveq2i 1 2 π = 1 T
5 2re 2
6 pire π
7 5 6 remulcli 2 π
8 2 7 eqeltri T
9 8 recni T
10 9 mulid2i 1 T = T
11 4 10 eqtri 1 2 π = T
12 11 oveq2i x + 1 2 π = x + T
13 12 eqcomi x + T = x + 1 2 π
14 13 oveq1i x + T mod 2 π = x + 1 2 π mod 2 π
15 14 a1i N x x mod 2 π = 0 x + T mod 2 π = x + 1 2 π mod 2 π
16 id x x
17 16 ad2antlr N x x mod 2 π = 0 x
18 2rp 2 +
19 pirp π +
20 rpmulcl 2 + π + 2 π +
21 18 19 20 mp2an 2 π +
22 21 a1i N x x mod 2 π = 0 2 π +
23 1z 1
24 23 a1i N x x mod 2 π = 0 1
25 modcyc x 2 π + 1 x + 1 2 π mod 2 π = x mod 2 π
26 17 22 24 25 syl3anc N x x mod 2 π = 0 x + 1 2 π mod 2 π = x mod 2 π
27 simpr N x x mod 2 π = 0 x mod 2 π = 0
28 15 26 27 3eqtrd N x x mod 2 π = 0 x + T mod 2 π = 0
29 28 iftrued N x x mod 2 π = 0 if x + T mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x + T 2 π sin x + T 2 = 2 N + 1 2 π
30 iftrue x mod 2 π = 0 if x mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x 2 π sin x 2 = 2 N + 1 2 π
31 30 adantl N x x mod 2 π = 0 if x mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x 2 π sin x 2 = 2 N + 1 2 π
32 29 31 eqtr4d N x x mod 2 π = 0 if x + T mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x + T 2 π sin x + T 2 = if x mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x 2 π sin x 2
33 iffalse ¬ x mod 2 π = 0 if x mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x 2 π sin x 2 = sin N + 1 2 x 2 π sin x 2
34 33 adantl N x ¬ x mod 2 π = 0 if x mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x 2 π sin x 2 = sin N + 1 2 x 2 π sin x 2
35 nncn N N
36 halfcn 1 2
37 36 a1i N 1 2
38 35 37 addcld N N + 1 2
39 38 adantr N x N + 1 2
40 recn x x
41 40 adantl N x x
42 39 41 mulcld N x N + 1 2 x
43 42 sincld N x sin N + 1 2 x
44 43 adantr N x ¬ x mod 2 π = 0 sin N + 1 2 x
45 7 recni 2 π
46 45 a1i N x 2 π
47 41 halfcld N x x 2
48 47 sincld N x sin x 2
49 46 48 mulcld N x 2 π sin x 2
50 49 adantr N x ¬ x mod 2 π = 0 2 π sin x 2
51 dirkerdenne0 x ¬ x mod 2 π = 0 2 π sin x 2 0
52 51 adantll N x ¬ x mod 2 π = 0 2 π sin x 2 0
53 44 50 52 div2negd N x ¬ x mod 2 π = 0 sin N + 1 2 x 2 π sin x 2 = sin N + 1 2 x 2 π sin x 2
54 14 a1i x x + T mod 2 π = x + 1 2 π mod 2 π
55 21 23 25 mp3an23 x x + 1 2 π mod 2 π = x mod 2 π
56 54 55 eqtrd x x + T mod 2 π = x mod 2 π
57 56 adantr x ¬ x mod 2 π = 0 x + T mod 2 π = x mod 2 π
58 simpr x ¬ x mod 2 π = 0 ¬ x mod 2 π = 0
59 58 neqned x ¬ x mod 2 π = 0 x mod 2 π 0
60 57 59 eqnetrd x ¬ x mod 2 π = 0 x + T mod 2 π 0
61 60 neneqd x ¬ x mod 2 π = 0 ¬ x + T mod 2 π = 0
62 iffalse ¬ x + T mod 2 π = 0 if x + T mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x + T 2 π sin x + T 2 = sin N + 1 2 x + T 2 π sin x + T 2
63 2 oveq2i x + T = x + 2 π
64 63 oveq2i N + 1 2 x + T = N + 1 2 x + 2 π
65 64 fveq2i sin N + 1 2 x + T = sin N + 1 2 x + 2 π
66 63 oveq1i x + T 2 = x + 2 π 2
67 66 fveq2i sin x + T 2 = sin x + 2 π 2
68 67 oveq2i 2 π sin x + T 2 = 2 π sin x + 2 π 2
69 65 68 oveq12i sin N + 1 2 x + T 2 π sin x + T 2 = sin N + 1 2 x + 2 π 2 π sin x + 2 π 2
70 62 69 eqtrdi ¬ x + T mod 2 π = 0 if x + T mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x + T 2 π sin x + T 2 = sin N + 1 2 x + 2 π 2 π sin x + 2 π 2
71 61 70 syl x ¬ x mod 2 π = 0 if x + T mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x + T 2 π sin x + T 2 = sin N + 1 2 x + 2 π 2 π sin x + 2 π 2
72 71 adantll N x ¬ x mod 2 π = 0 if x + T mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x + T 2 π sin x + T 2 = sin N + 1 2 x + 2 π 2 π sin x + 2 π 2
73 45 a1i N 2 π
74 35 37 73 adddird N N + 1 2 2 π = N 2 π + 1 2 2 π
75 ax-1cn 1
76 2cnne0 2 2 0
77 2cn 2
78 picn π
79 77 78 mulcli 2 π
80 div32 1 2 2 0 2 π 1 2 2 π = 1 2 π 2
81 75 76 79 80 mp3an 1 2 2 π = 1 2 π 2
82 2ne0 2 0
83 79 77 82 divcli 2 π 2
84 83 mulid2i 1 2 π 2 = 2 π 2
85 78 77 82 divcan3i 2 π 2 = π
86 84 85 eqtri 1 2 π 2 = π
87 81 86 eqtri 1 2 2 π = π
88 87 oveq2i N 2 π + 1 2 2 π = N 2 π + π
89 74 88 eqtrdi N N + 1 2 2 π = N 2 π + π
90 89 oveq2d N N + 1 2 x + N + 1 2 2 π = N + 1 2 x + N 2 π + π
91 90 adantr N x N + 1 2 x + N + 1 2 2 π = N + 1 2 x + N 2 π + π
92 39 41 46 adddid N x N + 1 2 x + 2 π = N + 1 2 x + N + 1 2 2 π
93 35 73 mulcld N N 2 π
94 93 adantr N x N 2 π
95 78 a1i N x π
96 42 94 95 addassd N x N + 1 2 x + N 2 π + π = N + 1 2 x + N 2 π + π
97 91 92 96 3eqtr4d N x N + 1 2 x + 2 π = N + 1 2 x + N 2 π + π
98 97 fveq2d N x sin N + 1 2 x + 2 π = sin N + 1 2 x + N 2 π + π
99 42 94 addcld N x N + 1 2 x + N 2 π
100 sinppi N + 1 2 x + N 2 π sin N + 1 2 x + N 2 π + π = sin N + 1 2 x + N 2 π
101 99 100 syl N x sin N + 1 2 x + N 2 π + π = sin N + 1 2 x + N 2 π
102 simpl N x N
103 102 nnzd N x N
104 sinper N + 1 2 x N sin N + 1 2 x + N 2 π = sin N + 1 2 x
105 42 103 104 syl2anc N x sin N + 1 2 x + N 2 π = sin N + 1 2 x
106 105 negeqd N x sin N + 1 2 x + N 2 π = sin N + 1 2 x
107 98 101 106 3eqtrd N x sin N + 1 2 x + 2 π = sin N + 1 2 x
108 45 a1i x 2 π
109 77 a1i x 2
110 82 a1i x 2 0
111 40 108 109 110 divdird x x + 2 π 2 = x 2 + 2 π 2
112 85 a1i x 2 π 2 = π
113 112 oveq2d x x 2 + 2 π 2 = x 2 + π
114 111 113 eqtrd x x + 2 π 2 = x 2 + π
115 114 fveq2d x sin x + 2 π 2 = sin x 2 + π
116 40 halfcld x x 2
117 sinppi x 2 sin x 2 + π = sin x 2
118 116 117 syl x sin x 2 + π = sin x 2
119 115 118 eqtrd x sin x + 2 π 2 = sin x 2
120 119 oveq2d x 2 π sin x + 2 π 2 = 2 π sin x 2
121 120 adantl N x 2 π sin x + 2 π 2 = 2 π sin x 2
122 107 121 oveq12d N x sin N + 1 2 x + 2 π 2 π sin x + 2 π 2 = sin N + 1 2 x 2 π sin x 2
123 122 adantr N x ¬ x mod 2 π = 0 sin N + 1 2 x + 2 π 2 π sin x + 2 π 2 = sin N + 1 2 x 2 π sin x 2
124 116 sincld x sin x 2
125 108 124 mulneg2d x 2 π sin x 2 = 2 π sin x 2
126 125 oveq2d x sin N + 1 2 x 2 π sin x 2 = sin N + 1 2 x 2 π sin x 2
127 126 ad2antlr N x ¬ x mod 2 π = 0 sin N + 1 2 x 2 π sin x 2 = sin N + 1 2 x 2 π sin x 2
128 72 123 127 3eqtrrd N x ¬ x mod 2 π = 0 sin N + 1 2 x 2 π sin x 2 = if x + T mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x + T 2 π sin x + T 2
129 34 53 128 3eqtr2rd N x ¬ x mod 2 π = 0 if x + T mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x + T 2 π sin x + T 2 = if x mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x 2 π sin x 2
130 32 129 pm2.61dan N x if x + T mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x + T 2 π sin x + T 2 = if x mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x 2 π sin x 2
131 8 a1i x T
132 16 131 readdcld x x + T
133 1 dirkerval2 N x + T D N x + T = if x + T mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x + T 2 π sin x + T 2
134 132 133 sylan2 N x D N x + T = if x + T mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x + T 2 π sin x + T 2
135 1 dirkerval2 N x D N x = if x mod 2 π = 0 2 N + 1 2 π sin N + 1 2 x 2 π sin x 2
136 130 134 135 3eqtr4d N x D N x + T = D N x