Metamath Proof Explorer


Theorem dirkerre

Description: The Dirichlet Kernel at any point evaluates to a real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis dirkerre.1 D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
Assertion dirkerre N S D N S

Proof

Step Hyp Ref Expression
1 dirkerre.1 D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
2 1 dirkerval2 N S D N S = if S mod 2 π = 0 2 N + 1 2 π sin N + 1 2 S 2 π sin S 2
3 2re 2
4 3 a1i N 2
5 nnre N N
6 4 5 remulcld N 2 N
7 1red N 1
8 6 7 readdcld N 2 N + 1
9 pire π
10 9 a1i N π
11 4 10 remulcld N 2 π
12 2cnd N 2
13 10 recnd N π
14 2ne0 2 0
15 14 a1i N 2 0
16 0re 0
17 pipos 0 < π
18 16 17 gtneii π 0
19 18 a1i N π 0
20 12 13 15 19 mulne0d N 2 π 0
21 8 11 20 redivcld N 2 N + 1 2 π
22 21 ad2antrr N S S mod 2 π = 0 2 N + 1 2 π
23 dirker2re N S ¬ S mod 2 π = 0 sin N + 1 2 S 2 π sin S 2
24 22 23 ifclda N S if S mod 2 π = 0 2 N + 1 2 π sin N + 1 2 S 2 π sin S 2
25 2 24 eqeltrd N S D N S