Metamath Proof Explorer


Theorem dirkerval

Description: The N_th Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis dirkerval.1 D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
Assertion dirkerval N D N = s if s mod 2 π = 0 2 N + 1 2 π sin N + 1 2 s 2 π sin s 2

Proof

Step Hyp Ref Expression
1 dirkerval.1 D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
2 simpl m = N s m = N
3 2 oveq2d m = N s 2 m = 2 N
4 3 oveq1d m = N s 2 m + 1 = 2 N + 1
5 4 oveq1d m = N s 2 m + 1 2 π = 2 N + 1 2 π
6 2 oveq1d m = N s m + 1 2 = N + 1 2
7 6 fvoveq1d m = N s sin m + 1 2 s = sin N + 1 2 s
8 7 oveq1d m = N s sin m + 1 2 s 2 π sin s 2 = sin N + 1 2 s 2 π sin s 2
9 5 8 ifeq12d m = N s if s mod 2 π = 0 2 m + 1 2 π sin m + 1 2 s 2 π sin s 2 = if s mod 2 π = 0 2 N + 1 2 π sin N + 1 2 s 2 π sin s 2
10 9 mpteq2dva m = N s if s mod 2 π = 0 2 m + 1 2 π sin m + 1 2 s 2 π sin s 2 = s if s mod 2 π = 0 2 N + 1 2 π sin N + 1 2 s 2 π sin s 2
11 simpl n = m s n = m
12 11 oveq2d n = m s 2 n = 2 m
13 12 oveq1d n = m s 2 n + 1 = 2 m + 1
14 13 oveq1d n = m s 2 n + 1 2 π = 2 m + 1 2 π
15 11 oveq1d n = m s n + 1 2 = m + 1 2
16 15 fvoveq1d n = m s sin n + 1 2 s = sin m + 1 2 s
17 16 oveq1d n = m s sin n + 1 2 s 2 π sin s 2 = sin m + 1 2 s 2 π sin s 2
18 14 17 ifeq12d n = m s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2 = if s mod 2 π = 0 2 m + 1 2 π sin m + 1 2 s 2 π sin s 2
19 18 mpteq2dva n = m s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2 = s if s mod 2 π = 0 2 m + 1 2 π sin m + 1 2 s 2 π sin s 2
20 19 cbvmptv n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2 = m s if s mod 2 π = 0 2 m + 1 2 π sin m + 1 2 s 2 π sin s 2
21 1 20 eqtri D = m s if s mod 2 π = 0 2 m + 1 2 π sin m + 1 2 s 2 π sin s 2
22 reex V
23 22 mptex s if s mod 2 π = 0 2 N + 1 2 π sin N + 1 2 s 2 π sin s 2 V
24 10 21 23 fvmpt N D N = s if s mod 2 π = 0 2 N + 1 2 π sin N + 1 2 s 2 π sin s 2