Metamath Proof Explorer


Theorem dirkerval2

Description: The N_th Dirichlet Kernel evaluated at a specific point S . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis dirkerval2.1 D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
Assertion dirkerval2 N S D N S = if S mod 2 π = 0 2 N + 1 2 π sin N + 1 2 S 2 π sin S 2

Proof

Step Hyp Ref Expression
1 dirkerval2.1 D = n s if s mod 2 π = 0 2 n + 1 2 π sin n + 1 2 s 2 π sin s 2
2 1 dirkerval N D N = s if s mod 2 π = 0 2 N + 1 2 π sin N + 1 2 s 2 π sin s 2
3 oveq1 s = t s mod 2 π = t mod 2 π
4 3 eqeq1d s = t s mod 2 π = 0 t mod 2 π = 0
5 oveq2 s = t N + 1 2 s = N + 1 2 t
6 5 fveq2d s = t sin N + 1 2 s = sin N + 1 2 t
7 fvoveq1 s = t sin s 2 = sin t 2
8 7 oveq2d s = t 2 π sin s 2 = 2 π sin t 2
9 6 8 oveq12d s = t sin N + 1 2 s 2 π sin s 2 = sin N + 1 2 t 2 π sin t 2
10 4 9 ifbieq2d s = t if s mod 2 π = 0 2 N + 1 2 π sin N + 1 2 s 2 π sin s 2 = if t mod 2 π = 0 2 N + 1 2 π sin N + 1 2 t 2 π sin t 2
11 10 cbvmptv s if s mod 2 π = 0 2 N + 1 2 π sin N + 1 2 s 2 π sin s 2 = t if t mod 2 π = 0 2 N + 1 2 π sin N + 1 2 t 2 π sin t 2
12 2 11 eqtrdi N D N = t if t mod 2 π = 0 2 N + 1 2 π sin N + 1 2 t 2 π sin t 2
13 12 adantr N S D N = t if t mod 2 π = 0 2 N + 1 2 π sin N + 1 2 t 2 π sin t 2
14 simpr N S t = S t = S
15 14 oveq1d N S t = S t mod 2 π = S mod 2 π
16 15 eqeq1d N S t = S t mod 2 π = 0 S mod 2 π = 0
17 14 oveq2d N S t = S N + 1 2 t = N + 1 2 S
18 17 fveq2d N S t = S sin N + 1 2 t = sin N + 1 2 S
19 14 fvoveq1d N S t = S sin t 2 = sin S 2
20 19 oveq2d N S t = S 2 π sin t 2 = 2 π sin S 2
21 18 20 oveq12d N S t = S sin N + 1 2 t 2 π sin t 2 = sin N + 1 2 S 2 π sin S 2
22 16 21 ifbieq2d N S t = S if t mod 2 π = 0 2 N + 1 2 π sin N + 1 2 t 2 π sin t 2 = if S mod 2 π = 0 2 N + 1 2 π sin N + 1 2 S 2 π sin S 2
23 simpr N S S
24 2re 2
25 24 a1i N 2
26 nnre N N
27 25 26 remulcld N 2 N
28 1red N 1
29 27 28 readdcld N 2 N + 1
30 pire π
31 30 a1i N π
32 25 31 remulcld N 2 π
33 2cnd N 2
34 31 recnd N π
35 2pos 0 < 2
36 35 a1i N 0 < 2
37 36 gt0ne0d N 2 0
38 pipos 0 < π
39 38 a1i N 0 < π
40 39 gt0ne0d N π 0
41 33 34 37 40 mulne0d N 2 π 0
42 29 32 41 redivcld N 2 N + 1 2 π
43 42 ad2antrr N S S mod 2 π = 0 2 N + 1 2 π
44 dirker2re N S ¬ S mod 2 π = 0 sin N + 1 2 S 2 π sin S 2
45 43 44 ifclda N S if S mod 2 π = 0 2 N + 1 2 π sin N + 1 2 S 2 π sin S 2
46 13 22 23 45 fvmptd N S D N S = if S mod 2 π = 0 2 N + 1 2 π sin N + 1 2 S 2 π sin S 2