Metamath Proof Explorer


Theorem dis1stc

Description: A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion dis1stc X V 𝒫 X 1 st 𝜔

Proof

Step Hyp Ref Expression
1 snex x V
2 distop x V 𝒫 x Top
3 1 2 ax-mp 𝒫 x Top
4 tgtop 𝒫 x Top topGen 𝒫 x = 𝒫 x
5 3 4 ax-mp topGen 𝒫 x = 𝒫 x
6 topbas 𝒫 x Top 𝒫 x TopBases
7 3 6 ax-mp 𝒫 x TopBases
8 snfi x Fin
9 pwfi x Fin 𝒫 x Fin
10 8 9 mpbi 𝒫 x Fin
11 isfinite 𝒫 x Fin 𝒫 x ω
12 10 11 mpbi 𝒫 x ω
13 sdomdom 𝒫 x ω 𝒫 x ω
14 12 13 ax-mp 𝒫 x ω
15 2ndci 𝒫 x TopBases 𝒫 x ω topGen 𝒫 x 2 nd 𝜔
16 7 14 15 mp2an topGen 𝒫 x 2 nd 𝜔
17 5 16 eqeltrri 𝒫 x 2 nd 𝜔
18 2ndc1stc 𝒫 x 2 nd 𝜔 𝒫 x 1 st 𝜔
19 17 18 ax-mp 𝒫 x 1 st 𝜔
20 19 rgenw x X 𝒫 x 1 st 𝜔
21 dislly X V 𝒫 X Locally 1 st 𝜔 x X 𝒫 x 1 st 𝜔
22 20 21 mpbiri X V 𝒫 X Locally 1 st 𝜔
23 lly1stc Locally 1 st 𝜔 = 1 st 𝜔
24 22 23 eleqtrdi X V 𝒫 X 1 st 𝜔