Metamath Proof Explorer


Theorem dis2ndc

Description: A discrete space is second-countable iff it is countable. (Contributed by Mario Carneiro, 13-Apr-2015)

Ref Expression
Assertion dis2ndc X ω 𝒫 X 2 nd 𝜔

Proof

Step Hyp Ref Expression
1 ctex X ω X V
2 pwexr 𝒫 X 2 nd 𝜔 X V
3 snex x V
4 3 2a1i X V x X x V
5 vex x V
6 5 sneqr x = y x = y
7 sneq x = y x = y
8 6 7 impbii x = y x = y
9 8 2a1i X V x X y X x = y x = y
10 4 9 dom2lem X V x X x : X 1-1 V
11 f1f1orn x X x : X 1-1 V x X x : X 1-1 onto ran x X x
12 10 11 syl X V x X x : X 1-1 onto ran x X x
13 f1oeng X V x X x : X 1-1 onto ran x X x X ran x X x
14 12 13 mpdan X V X ran x X x
15 domen1 X ran x X x X ω ran x X x ω
16 14 15 syl X V X ω ran x X x ω
17 distop X V 𝒫 X Top
18 simpr X V x X x X
19 5 snelpw x X x 𝒫 X
20 18 19 sylib X V x X x 𝒫 X
21 20 fmpttd X V x X x : X 𝒫 X
22 21 frnd X V ran x X x 𝒫 X
23 elpwi y 𝒫 X y X
24 23 ad2antrl X V y 𝒫 X z y y X
25 simprr X V y 𝒫 X z y z y
26 24 25 sseldd X V y 𝒫 X z y z X
27 eqidd X V y 𝒫 X z y z = z
28 sneq x = z x = z
29 28 rspceeqv z X z = z x X z = x
30 26 27 29 syl2anc X V y 𝒫 X z y x X z = x
31 snex z V
32 eqid x X x = x X x
33 32 elrnmpt z V z ran x X x x X z = x
34 31 33 ax-mp z ran x X x x X z = x
35 30 34 sylibr X V y 𝒫 X z y z ran x X x
36 vsnid z z
37 36 a1i X V y 𝒫 X z y z z
38 25 snssd X V y 𝒫 X z y z y
39 eleq2 w = z z w z z
40 sseq1 w = z w y z y
41 39 40 anbi12d w = z z w w y z z z y
42 41 rspcev z ran x X x z z z y w ran x X x z w w y
43 35 37 38 42 syl12anc X V y 𝒫 X z y w ran x X x z w w y
44 43 ralrimivva X V y 𝒫 X z y w ran x X x z w w y
45 basgen2 𝒫 X Top ran x X x 𝒫 X y 𝒫 X z y w ran x X x z w w y topGen ran x X x = 𝒫 X
46 17 22 44 45 syl3anc X V topGen ran x X x = 𝒫 X
47 46 adantr X V ran x X x ω topGen ran x X x = 𝒫 X
48 46 17 eqeltrd X V topGen ran x X x Top
49 tgclb ran x X x TopBases topGen ran x X x Top
50 48 49 sylibr X V ran x X x TopBases
51 2ndci ran x X x TopBases ran x X x ω topGen ran x X x 2 nd 𝜔
52 50 51 sylan X V ran x X x ω topGen ran x X x 2 nd 𝜔
53 47 52 eqeltrrd X V ran x X x ω 𝒫 X 2 nd 𝜔
54 is2ndc 𝒫 X 2 nd 𝜔 b TopBases b ω topGen b = 𝒫 X
55 vex b V
56 simpr X V b TopBases b ω topGen b = 𝒫 X x X x X
57 56 19 sylib X V b TopBases b ω topGen b = 𝒫 X x X x 𝒫 X
58 simplrr X V b TopBases b ω topGen b = 𝒫 X x X topGen b = 𝒫 X
59 57 58 eleqtrrd X V b TopBases b ω topGen b = 𝒫 X x X x topGen b
60 vsnid x x
61 tg2 x topGen b x x y b x y y x
62 59 60 61 sylancl X V b TopBases b ω topGen b = 𝒫 X x X y b x y y x
63 simprrl X V b TopBases b ω topGen b = 𝒫 X x X y b x y y x x y
64 63 snssd X V b TopBases b ω topGen b = 𝒫 X x X y b x y y x x y
65 simprrr X V b TopBases b ω topGen b = 𝒫 X x X y b x y y x y x
66 64 65 eqssd X V b TopBases b ω topGen b = 𝒫 X x X y b x y y x x = y
67 simprl X V b TopBases b ω topGen b = 𝒫 X x X y b x y y x y b
68 66 67 eqeltrd X V b TopBases b ω topGen b = 𝒫 X x X y b x y y x x b
69 62 68 rexlimddv X V b TopBases b ω topGen b = 𝒫 X x X x b
70 69 fmpttd X V b TopBases b ω topGen b = 𝒫 X x X x : X b
71 70 frnd X V b TopBases b ω topGen b = 𝒫 X ran x X x b
72 ssdomg b V ran x X x b ran x X x b
73 55 71 72 mpsyl X V b TopBases b ω topGen b = 𝒫 X ran x X x b
74 simprl X V b TopBases b ω topGen b = 𝒫 X b ω
75 domtr ran x X x b b ω ran x X x ω
76 73 74 75 syl2anc X V b TopBases b ω topGen b = 𝒫 X ran x X x ω
77 76 rexlimdva2 X V b TopBases b ω topGen b = 𝒫 X ran x X x ω
78 54 77 syl5bi X V 𝒫 X 2 nd 𝜔 ran x X x ω
79 78 imp X V 𝒫 X 2 nd 𝜔 ran x X x ω
80 53 79 impbida X V ran x X x ω 𝒫 X 2 nd 𝜔
81 16 80 bitrd X V X ω 𝒫 X 2 nd 𝜔
82 1 2 81 pm5.21nii X ω 𝒫 X 2 nd 𝜔