Step |
Hyp |
Ref |
Expression |
1 |
|
distop |
|
2 |
|
pwfi |
|
3 |
2
|
biimpi |
|
4 |
1 3
|
elind |
|
5 |
|
fincmp |
|
6 |
4 5
|
syl |
|
7 |
|
simpr |
|
8 |
7
|
snssd |
|
9 |
|
snex |
|
10 |
9
|
elpw |
|
11 |
8 10
|
sylibr |
|
12 |
11
|
fmpttd |
|
13 |
12
|
frnd |
|
14 |
|
eqid |
|
15 |
14
|
rnmpt |
|
16 |
15
|
unieqi |
|
17 |
9
|
dfiun2 |
|
18 |
|
iunid |
|
19 |
16 17 18
|
3eqtr2ri |
|
20 |
19
|
a1i |
|
21 |
|
unipw |
|
22 |
21
|
eqcomi |
|
23 |
22
|
cmpcov |
|
24 |
13 20 23
|
mpd3an23 |
|
25 |
|
elinel2 |
|
26 |
|
elinel1 |
|
27 |
26
|
elpwid |
|
28 |
|
snfi |
|
29 |
28
|
rgenw |
|
30 |
14
|
fmpt |
|
31 |
29 30
|
mpbi |
|
32 |
|
frn |
|
33 |
31 32
|
mp1i |
|
34 |
27 33
|
sstrd |
|
35 |
|
unifi |
|
36 |
25 34 35
|
syl2anc |
|
37 |
|
eleq1 |
|
38 |
36 37
|
syl5ibrcom |
|
39 |
38
|
rexlimiv |
|
40 |
24 39
|
syl |
|
41 |
6 40
|
impbii |
|