Step |
Hyp |
Ref |
Expression |
1 |
|
discr.1 |
|
2 |
|
discr.2 |
|
3 |
|
discr.3 |
|
4 |
|
discr.4 |
|
5 |
2
|
adantr |
|
6 |
|
resqcl |
|
7 |
5 6
|
syl |
|
8 |
7
|
recnd |
|
9 |
|
4re |
|
10 |
1
|
adantr |
|
11 |
3
|
adantr |
|
12 |
10 11
|
remulcld |
|
13 |
|
remulcl |
|
14 |
9 12 13
|
sylancr |
|
15 |
14
|
recnd |
|
16 |
|
4pos |
|
17 |
9 16
|
elrpii |
|
18 |
|
simpr |
|
19 |
10 18
|
elrpd |
|
20 |
|
rpmulcl |
|
21 |
17 19 20
|
sylancr |
|
22 |
21
|
rpcnd |
|
23 |
21
|
rpne0d |
|
24 |
8 15 22 23
|
divsubdird |
|
25 |
12
|
recnd |
|
26 |
10
|
recnd |
|
27 |
|
4cn |
|
28 |
27
|
a1i |
|
29 |
19
|
rpne0d |
|
30 |
|
4ne0 |
|
31 |
30
|
a1i |
|
32 |
25 26 28 29 31
|
divcan5d |
|
33 |
11
|
recnd |
|
34 |
33 26 29
|
divcan3d |
|
35 |
32 34
|
eqtrd |
|
36 |
35
|
oveq2d |
|
37 |
24 36
|
eqtrd |
|
38 |
7 21
|
rerpdivcld |
|
39 |
38
|
recnd |
|
40 |
39
|
2timesd |
|
41 |
|
2t2e4 |
|
42 |
41
|
oveq1i |
|
43 |
|
2cnd |
|
44 |
43 43 26
|
mulassd |
|
45 |
42 44
|
eqtr3id |
|
46 |
45
|
oveq2d |
|
47 |
43 8 22 23
|
divassd |
|
48 |
|
2rp |
|
49 |
|
rpmulcl |
|
50 |
48 19 49
|
sylancr |
|
51 |
50
|
rpcnd |
|
52 |
50
|
rpne0d |
|
53 |
|
2ne0 |
|
54 |
53
|
a1i |
|
55 |
8 51 43 52 54
|
divcan5d |
|
56 |
46 47 55
|
3eqtr3d |
|
57 |
40 56
|
eqtr3d |
|
58 |
|
oveq1 |
|
59 |
58
|
oveq2d |
|
60 |
|
oveq2 |
|
61 |
59 60
|
oveq12d |
|
62 |
61
|
oveq1d |
|
63 |
62
|
breq2d |
|
64 |
4
|
ralrimiva |
|
65 |
64
|
adantr |
|
66 |
5 50
|
rerpdivcld |
|
67 |
66
|
renegcld |
|
68 |
63 65 67
|
rspcdva |
|
69 |
66
|
recnd |
|
70 |
|
sqneg |
|
71 |
69 70
|
syl |
|
72 |
5
|
recnd |
|
73 |
|
sqdiv |
|
74 |
72 51 52 73
|
syl3anc |
|
75 |
|
sqval |
|
76 |
51 75
|
syl |
|
77 |
51 43 26
|
mulassd |
|
78 |
43 26 43
|
mul32d |
|
79 |
78 42
|
eqtrdi |
|
80 |
79
|
oveq1d |
|
81 |
76 77 80
|
3eqtr2d |
|
82 |
81
|
oveq2d |
|
83 |
71 74 82
|
3eqtrd |
|
84 |
8 22 26 23 29
|
divdiv1d |
|
85 |
83 84
|
eqtr4d |
|
86 |
85
|
oveq2d |
|
87 |
39 26 29
|
divcan2d |
|
88 |
86 87
|
eqtrd |
|
89 |
72 69
|
mulneg2d |
|
90 |
|
sqval |
|
91 |
72 90
|
syl |
|
92 |
91
|
oveq1d |
|
93 |
72 72 51 52
|
divassd |
|
94 |
92 93
|
eqtrd |
|
95 |
94
|
negeqd |
|
96 |
89 95
|
eqtr4d |
|
97 |
88 96
|
oveq12d |
|
98 |
7 50
|
rerpdivcld |
|
99 |
98
|
recnd |
|
100 |
39 99
|
negsubd |
|
101 |
97 100
|
eqtrd |
|
102 |
101
|
oveq1d |
|
103 |
39 33 99
|
addsubd |
|
104 |
102 103
|
eqtr4d |
|
105 |
68 104
|
breqtrd |
|
106 |
38 11
|
readdcld |
|
107 |
106 98
|
subge0d |
|
108 |
105 107
|
mpbid |
|
109 |
57 108
|
eqbrtrd |
|
110 |
38 11 38
|
leadd2d |
|
111 |
109 110
|
mpbird |
|
112 |
38 11
|
suble0d |
|
113 |
111 112
|
mpbird |
|
114 |
37 113
|
eqbrtrd |
|
115 |
7 14
|
resubcld |
|
116 |
|
0red |
|
117 |
115 116 21
|
ledivmuld |
|
118 |
114 117
|
mpbid |
|
119 |
22
|
mul01d |
|
120 |
118 119
|
breqtrd |
|
121 |
3
|
adantr |
|
122 |
121
|
ltp1d |
|
123 |
|
peano2re |
|
124 |
121 123
|
syl |
|
125 |
121 124
|
ltnegd |
|
126 |
122 125
|
mpbid |
|
127 |
|
df-neg |
|
128 |
126 127
|
breqtrdi |
|
129 |
124
|
renegcld |
|
130 |
|
0red |
|
131 |
129 121 130
|
ltaddsubd |
|
132 |
128 131
|
mpbird |
|
133 |
132
|
expr |
|
134 |
|
oveq1 |
|
135 |
134
|
oveq2d |
|
136 |
|
oveq2 |
|
137 |
135 136
|
oveq12d |
|
138 |
137
|
oveq1d |
|
139 |
138
|
breq2d |
|
140 |
64
|
adantr |
|
141 |
2
|
adantr |
|
142 |
|
simprr |
|
143 |
129 141 142
|
redivcld |
|
144 |
139 140 143
|
rspcdva |
|
145 |
|
simprl |
|
146 |
145
|
oveq1d |
|
147 |
143
|
recnd |
|
148 |
|
sqcl |
|
149 |
147 148
|
syl |
|
150 |
149
|
mul02d |
|
151 |
146 150
|
eqtr3d |
|
152 |
129
|
recnd |
|
153 |
141
|
recnd |
|
154 |
152 153 142
|
divcan2d |
|
155 |
151 154
|
oveq12d |
|
156 |
152
|
addid2d |
|
157 |
155 156
|
eqtrd |
|
158 |
157
|
oveq1d |
|
159 |
144 158
|
breqtrd |
|
160 |
|
0re |
|
161 |
129 121
|
readdcld |
|
162 |
|
lenlt |
|
163 |
160 161 162
|
sylancr |
|
164 |
159 163
|
mpbid |
|
165 |
164
|
expr |
|
166 |
133 165
|
pm2.65d |
|
167 |
|
nne |
|
168 |
166 167
|
sylib |
|
169 |
168
|
sq0id |
|
170 |
|
simpr |
|
171 |
170
|
oveq1d |
|
172 |
3
|
recnd |
|
173 |
172
|
adantr |
|
174 |
173
|
mul02d |
|
175 |
171 174
|
eqtr3d |
|
176 |
175
|
oveq2d |
|
177 |
27
|
mul01i |
|
178 |
176 177
|
eqtrdi |
|
179 |
169 178
|
oveq12d |
|
180 |
|
0m0e0 |
|
181 |
|
0le0 |
|
182 |
180 181
|
eqbrtri |
|
183 |
179 182
|
eqbrtrdi |
|
184 |
|
eqid |
|
185 |
1 2 3 4 184
|
discr1 |
|
186 |
|
leloe |
|
187 |
160 1 186
|
sylancr |
|
188 |
185 187
|
mpbid |
|
189 |
120 183 188
|
mpjaodan |
|