Step |
Hyp |
Ref |
Expression |
1 |
|
distop |
|
2 |
|
simplrl |
|
3 |
2
|
snssd |
|
4 |
|
snex |
|
5 |
4
|
elpw |
|
6 |
3 5
|
sylibr |
|
7 |
|
simplrr |
|
8 |
7
|
snssd |
|
9 |
|
snex |
|
10 |
9
|
elpw |
|
11 |
8 10
|
sylibr |
|
12 |
|
vsnid |
|
13 |
12
|
a1i |
|
14 |
|
vsnid |
|
15 |
14
|
a1i |
|
16 |
|
disjsn2 |
|
17 |
16
|
adantl |
|
18 |
|
eleq2 |
|
19 |
|
ineq1 |
|
20 |
19
|
eqeq1d |
|
21 |
18 20
|
3anbi13d |
|
22 |
|
eleq2 |
|
23 |
|
ineq2 |
|
24 |
23
|
eqeq1d |
|
25 |
22 24
|
3anbi23d |
|
26 |
21 25
|
rspc2ev |
|
27 |
6 11 13 15 17 26
|
syl113anc |
|
28 |
27
|
ex |
|
29 |
28
|
ralrimivva |
|
30 |
|
unipw |
|
31 |
30
|
eqcomi |
|
32 |
31
|
ishaus |
|
33 |
1 29 32
|
sylanbrc |
|