| Step |
Hyp |
Ref |
Expression |
| 1 |
|
distop |
|
| 2 |
|
simplrl |
|
| 3 |
2
|
snssd |
|
| 4 |
|
vsnex |
|
| 5 |
4
|
elpw |
|
| 6 |
3 5
|
sylibr |
|
| 7 |
|
simplrr |
|
| 8 |
7
|
snssd |
|
| 9 |
|
vsnex |
|
| 10 |
9
|
elpw |
|
| 11 |
8 10
|
sylibr |
|
| 12 |
|
vsnid |
|
| 13 |
12
|
a1i |
|
| 14 |
|
vsnid |
|
| 15 |
14
|
a1i |
|
| 16 |
|
disjsn2 |
|
| 17 |
16
|
adantl |
|
| 18 |
|
eleq2 |
|
| 19 |
|
ineq1 |
|
| 20 |
19
|
eqeq1d |
|
| 21 |
18 20
|
3anbi13d |
|
| 22 |
|
eleq2 |
|
| 23 |
|
ineq2 |
|
| 24 |
23
|
eqeq1d |
|
| 25 |
22 24
|
3anbi23d |
|
| 26 |
21 25
|
rspc2ev |
|
| 27 |
6 11 13 15 17 26
|
syl113anc |
|
| 28 |
27
|
ex |
|
| 29 |
28
|
ralrimivva |
|
| 30 |
|
unipw |
|
| 31 |
30
|
eqcomi |
|
| 32 |
31
|
ishaus |
|
| 33 |
1 29 32
|
sylanbrc |
|