| Step | Hyp | Ref | Expression | 
						
							| 1 |  | distop |  | 
						
							| 2 |  | simplrl |  | 
						
							| 3 | 2 | snssd |  | 
						
							| 4 |  | vsnex |  | 
						
							| 5 | 4 | elpw |  | 
						
							| 6 | 3 5 | sylibr |  | 
						
							| 7 |  | simplrr |  | 
						
							| 8 | 7 | snssd |  | 
						
							| 9 |  | vsnex |  | 
						
							| 10 | 9 | elpw |  | 
						
							| 11 | 8 10 | sylibr |  | 
						
							| 12 |  | vsnid |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 |  | vsnid |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 |  | disjsn2 |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 |  | eleq2 |  | 
						
							| 19 |  | ineq1 |  | 
						
							| 20 | 19 | eqeq1d |  | 
						
							| 21 | 18 20 | 3anbi13d |  | 
						
							| 22 |  | eleq2 |  | 
						
							| 23 |  | ineq2 |  | 
						
							| 24 | 23 | eqeq1d |  | 
						
							| 25 | 22 24 | 3anbi23d |  | 
						
							| 26 | 21 25 | rspc2ev |  | 
						
							| 27 | 6 11 13 15 17 26 | syl113anc |  | 
						
							| 28 | 27 | ex |  | 
						
							| 29 | 28 | ralrimivva |  | 
						
							| 30 |  | unipw |  | 
						
							| 31 | 30 | eqcomi |  | 
						
							| 32 | 31 | ishaus |  | 
						
							| 33 | 1 29 32 | sylanbrc |  |