Metamath Proof Explorer


Theorem disj

Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004) Avoid ax-10 , ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion disj A B = x A ¬ x B

Proof

Step Hyp Ref Expression
1 df-in A B = z | z A z B
2 1 eqeq1i A B = z | z A z B =
3 dfcleq = z | z A z B x x x z | z A z B
4 df-clab x z | z A z B x z z A z B
5 sb6 x z z A z B z z = x z A z B
6 id z = x z = x
7 eleq1w z = x z A x A
8 7 biimpd z = x z A x A
9 eleq1w z = x z B x B
10 9 biimpd z = x z B x B
11 8 10 anim12d z = x z A z B x A x B
12 6 11 embantd z = x z = x z A z B x A x B
13 12 spimvw z z = x z A z B x A x B
14 eleq1a x A z = x z A
15 eleq1a x B z = x z B
16 14 15 anim12ii x A x B z = x z A z B
17 16 alrimiv x A x B z z = x z A z B
18 13 17 impbii z z = x z A z B x A x B
19 4 5 18 3bitri x z | z A z B x A x B
20 19 bibi2i x x z | z A z B x x A x B
21 20 albii x x x z | z A z B x x x A x B
22 3 21 bitri = z | z A z B x x x A x B
23 eqcom z | z A z B = = z | z A z B
24 bicom x A x B x x x A x B
25 24 albii x x A x B x x x x A x B
26 22 23 25 3bitr4i z | z A z B = x x A x B x
27 imnan x A ¬ x B ¬ x A x B
28 noel ¬ x
29 28 nbn ¬ x A x B x A x B x
30 27 29 bitr2i x A x B x x A ¬ x B
31 30 albii x x A x B x x x A ¬ x B
32 2 26 31 3bitri A B = x x A ¬ x B
33 df-ral x A ¬ x B x x A ¬ x B
34 32 33 bitr4i A B = x A ¬ x B