Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
disj2
Next ⟩
disj4
Metamath Proof Explorer
Ascii
Unicode
Theorem
disj2
Description:
Two ways of saying that two classes are disjoint.
(Contributed by
NM
, 17-May-1998)
Ref
Expression
Assertion
disj2
⊢
A
∩
B
=
∅
↔
A
⊆
V
∖
B
Proof
Step
Hyp
Ref
Expression
1
ssv
⊢
A
⊆
V
2
reldisj
⊢
A
⊆
V
→
A
∩
B
=
∅
↔
A
⊆
V
∖
B
3
1
2
ax-mp
⊢
A
∩
B
=
∅
↔
A
⊆
V
∖
B