Metamath Proof Explorer


Theorem disj3

Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998)

Ref Expression
Assertion disj3 A B = A = A B

Proof

Step Hyp Ref Expression
1 pm4.71 x A ¬ x B x A x A ¬ x B
2 eldif x A B x A ¬ x B
3 2 bibi2i x A x A B x A x A ¬ x B
4 1 3 bitr4i x A ¬ x B x A x A B
5 4 albii x x A ¬ x B x x A x A B
6 disj1 A B = x x A ¬ x B
7 dfcleq A = A B x x A x A B
8 5 6 7 3bitr4i A B = A = A B