Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
disj3
Next ⟩
disjne
Metamath Proof Explorer
Ascii
Unicode
Theorem
disj3
Description:
Two ways of saying that two classes are disjoint.
(Contributed by
NM
, 19-May-1998)
Ref
Expression
Assertion
disj3
⊢
A
∩
B
=
∅
↔
A
=
A
∖
B
Proof
Step
Hyp
Ref
Expression
1
pm4.71
⊢
x
∈
A
→
¬
x
∈
B
↔
x
∈
A
↔
x
∈
A
∧
¬
x
∈
B
2
eldif
⊢
x
∈
A
∖
B
↔
x
∈
A
∧
¬
x
∈
B
3
2
bibi2i
⊢
x
∈
A
↔
x
∈
A
∖
B
↔
x
∈
A
↔
x
∈
A
∧
¬
x
∈
B
4
1
3
bitr4i
⊢
x
∈
A
→
¬
x
∈
B
↔
x
∈
A
↔
x
∈
A
∖
B
5
4
albii
⊢
∀
x
x
∈
A
→
¬
x
∈
B
↔
∀
x
x
∈
A
↔
x
∈
A
∖
B
6
disj1
⊢
A
∩
B
=
∅
↔
∀
x
x
∈
A
→
¬
x
∈
B
7
dfcleq
⊢
A
=
A
∖
B
↔
∀
x
x
∈
A
↔
x
∈
A
∖
B
8
5
6
7
3bitr4i
⊢
A
∩
B
=
∅
↔
A
=
A
∖
B