Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
disj4
Next ⟩
ssdisj
Metamath Proof Explorer
Ascii
Unicode
Theorem
disj4
Description:
Two ways of saying that two classes are disjoint.
(Contributed by
NM
, 21-Mar-2004)
Ref
Expression
Assertion
disj4
⊢
A
∩
B
=
∅
↔
¬
A
∖
B
⊂
A
Proof
Step
Hyp
Ref
Expression
1
disj3
⊢
A
∩
B
=
∅
↔
A
=
A
∖
B
2
eqcom
⊢
A
=
A
∖
B
↔
A
∖
B
=
A
3
difss
⊢
A
∖
B
⊆
A
4
dfpss2
⊢
A
∖
B
⊂
A
↔
A
∖
B
⊆
A
∧
¬
A
∖
B
=
A
5
3
4
mpbiran
⊢
A
∖
B
⊂
A
↔
¬
A
∖
B
=
A
6
5
con2bii
⊢
A
∖
B
=
A
↔
¬
A
∖
B
⊂
A
7
1
2
6
3bitri
⊢
A
∩
B
=
∅
↔
¬
A
∖
B
⊂
A