Metamath Proof Explorer


Theorem disjdifprg2

Description: A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion disjdifprg2 A V Disj x A B A B x

Proof

Step Hyp Ref Expression
1 inex1g A V A B V
2 elex A V A V
3 disjdifprg A B V A V Disj x A A B A B x
4 1 2 3 syl2anc A V Disj x A A B A B x
5 difin A A B = A B
6 5 preq1i A A B A B = A B A B
7 6 a1i A V A A B A B = A B A B
8 7 disjeq1d A V Disj x A A B A B x Disj x A B A B x
9 4 8 mpbid A V Disj x A B A B x