Metamath Proof Explorer


Theorem disjdmqsss

Description: Lemma for disjdmqseq via disjdmqs . (Contributed by Peter Mazsa, 16-Sep-2021)

Ref Expression
Assertion disjdmqsss Disj R dom R / R dom R / R

Proof

Step Hyp Ref Expression
1 disjrel Disj R Rel R
2 releldmqs v V Rel R v dom R / R u dom R x u R v = u R
3 2 elv Rel R v dom R / R u dom R x u R v = u R
4 1 3 syl Disj R v dom R / R u dom R x u R v = u R
5 disjlem19 x V Disj R u dom R x u R u R = x R
6 5 elv Disj R u dom R x u R u R = x R
7 6 ralrimivv Disj R u dom R x u R u R = x R
8 2r19.29 u dom R x u R u R = x R u dom R x u R v = u R u dom R x u R u R = x R v = u R
9 8 ex u dom R x u R u R = x R u dom R x u R v = u R u dom R x u R u R = x R v = u R
10 7 9 syl Disj R u dom R x u R v = u R u dom R x u R u R = x R v = u R
11 4 10 sylbid Disj R v dom R / R u dom R x u R u R = x R v = u R
12 eqtr v = u R u R = x R v = x R
13 12 ancoms u R = x R v = u R v = x R
14 13 reximi x u R u R = x R v = u R x u R v = x R
15 14 reximi u dom R x u R u R = x R v = u R u dom R x u R v = x R
16 11 15 syl6 Disj R v dom R / R u dom R x u R v = x R
17 releldmqscoss v V Rel R v dom R / R u dom R x u R v = x R
18 17 elv Rel R v dom R / R u dom R x u R v = x R
19 1 18 syl Disj R v dom R / R u dom R x u R v = x R
20 16 19 sylibrd Disj R v dom R / R v dom R / R
21 20 ssrdv Disj R dom R / R dom R / R