Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
disjeccnvep
Next ⟩
eccnvepres2
Metamath Proof Explorer
Ascii
Unicode
Theorem
disjeccnvep
Description:
Property of the epsilon relation.
(Contributed by
Peter Mazsa
, 27-Apr-2020)
Ref
Expression
Assertion
disjeccnvep
⊢
A
∈
V
∧
B
∈
W
→
A
E
-1
∩
B
E
-1
=
∅
↔
A
∩
B
=
∅
Proof
Step
Hyp
Ref
Expression
1
eccnvep
⊢
A
∈
V
→
A
E
-1
=
A
2
eccnvep
⊢
B
∈
W
→
B
E
-1
=
B
3
1
2
ineqan12d
⊢
A
∈
V
∧
B
∈
W
→
A
E
-1
∩
B
E
-1
=
A
∩
B
4
3
eqeq1d
⊢
A
∈
V
∧
B
∈
W
→
A
E
-1
∩
B
E
-1
=
∅
↔
A
∩
B
=
∅