Metamath Proof Explorer


Theorem disjeccnvep

Description: Property of the epsilon relation. (Contributed by Peter Mazsa, 27-Apr-2020)

Ref Expression
Assertion disjeccnvep A V B W A E -1 B E -1 = A B =

Proof

Step Hyp Ref Expression
1 eccnvep A V A E -1 = A
2 eccnvep B W B E -1 = B
3 1 2 ineqan12d A V B W A E -1 B E -1 = A B
4 3 eqeq1d A V B W A E -1 B E -1 = A B =