Metamath Proof Explorer


Theorem disjecxrncnvep

Description: Two ways of saying that cosets are disjoint, special case of disjecxrn . (Contributed by Peter Mazsa, 12-Jul-2020) (Revised by Peter Mazsa, 25-Aug-2023)

Ref Expression
Assertion disjecxrncnvep A V B W A R E -1 B R E -1 = A B = A R B R =

Proof

Step Hyp Ref Expression
1 disjecxrn A V B W A R E -1 B R E -1 = A R B R = A E -1 B E -1 =
2 orcom A R B R = A E -1 B E -1 = A E -1 B E -1 = A R B R =
3 1 2 bitrdi A V B W A R E -1 B R E -1 = A E -1 B E -1 = A R B R =
4 disjeccnvep A V B W A E -1 B E -1 = A B =
5 4 orbi1d A V B W A E -1 B E -1 = A R B R = A B = A R B R =
6 3 5 bitrd A V B W A R E -1 B R E -1 = A B = A R B R =