Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
disjenex
Next ⟩
domss2
Metamath Proof Explorer
Ascii
Unicode
Theorem
disjenex
Description:
Existence version of
disjen
.
(Contributed by
Mario Carneiro
, 7-Feb-2015)
Ref
Expression
Assertion
disjenex
⊢
A
∈
V
∧
B
∈
W
→
∃
x
A
∩
x
=
∅
∧
x
≈
B
Proof
Step
Hyp
Ref
Expression
1
simpr
⊢
A
∈
V
∧
B
∈
W
→
B
∈
W
2
snex
⊢
𝒫
⋃
ran
⁡
A
∈
V
3
xpexg
⊢
B
∈
W
∧
𝒫
⋃
ran
⁡
A
∈
V
→
B
×
𝒫
⋃
ran
⁡
A
∈
V
4
1
2
3
sylancl
⊢
A
∈
V
∧
B
∈
W
→
B
×
𝒫
⋃
ran
⁡
A
∈
V
5
disjen
⊢
A
∈
V
∧
B
∈
W
→
A
∩
B
×
𝒫
⋃
ran
⁡
A
=
∅
∧
B
×
𝒫
⋃
ran
⁡
A
≈
B
6
ineq2
⊢
x
=
B
×
𝒫
⋃
ran
⁡
A
→
A
∩
x
=
A
∩
B
×
𝒫
⋃
ran
⁡
A
7
6
eqeq1d
⊢
x
=
B
×
𝒫
⋃
ran
⁡
A
→
A
∩
x
=
∅
↔
A
∩
B
×
𝒫
⋃
ran
⁡
A
=
∅
8
breq1
⊢
x
=
B
×
𝒫
⋃
ran
⁡
A
→
x
≈
B
↔
B
×
𝒫
⋃
ran
⁡
A
≈
B
9
7
8
anbi12d
⊢
x
=
B
×
𝒫
⋃
ran
⁡
A
→
A
∩
x
=
∅
∧
x
≈
B
↔
A
∩
B
×
𝒫
⋃
ran
⁡
A
=
∅
∧
B
×
𝒫
⋃
ran
⁡
A
≈
B
10
4
5
9
spcedv
⊢
A
∈
V
∧
B
∈
W
→
∃
x
A
∩
x
=
∅
∧
x
≈
B