Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
disjeq0
Next ⟩
disjel
Metamath Proof Explorer
Ascii
Unicode
Theorem
disjeq0
Description:
Two disjoint sets are equal iff both are empty.
(Contributed by
AV
, 19-Jun-2022)
Ref
Expression
Assertion
disjeq0
⊢
A
∩
B
=
∅
→
A
=
B
↔
A
=
∅
∧
B
=
∅
Proof
Step
Hyp
Ref
Expression
1
ineq1
⊢
A
=
B
→
A
∩
B
=
B
∩
B
2
inidm
⊢
B
∩
B
=
B
3
1
2
eqtrdi
⊢
A
=
B
→
A
∩
B
=
B
4
3
eqeq1d
⊢
A
=
B
→
A
∩
B
=
∅
↔
B
=
∅
5
eqtr
⊢
A
=
B
∧
B
=
∅
→
A
=
∅
6
simpr
⊢
A
=
B
∧
B
=
∅
→
B
=
∅
7
5
6
jca
⊢
A
=
B
∧
B
=
∅
→
A
=
∅
∧
B
=
∅
8
7
ex
⊢
A
=
B
→
B
=
∅
→
A
=
∅
∧
B
=
∅
9
4
8
sylbid
⊢
A
=
B
→
A
∩
B
=
∅
→
A
=
∅
∧
B
=
∅
10
9
com12
⊢
A
∩
B
=
∅
→
A
=
B
→
A
=
∅
∧
B
=
∅
11
eqtr3
⊢
A
=
∅
∧
B
=
∅
→
A
=
B
12
10
11
impbid1
⊢
A
∩
B
=
∅
→
A
=
B
↔
A
=
∅
∧
B
=
∅