Metamath Proof Explorer


Theorem disjeq1

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjeq1 A = B Disj x A C Disj x B C

Proof

Step Hyp Ref Expression
1 eqimss2 A = B B A
2 disjss1 B A Disj x A C Disj x B C
3 1 2 syl A = B Disj x A C Disj x B C
4 eqimss A = B A B
5 disjss1 A B Disj x B C Disj x A C
6 4 5 syl A = B Disj x B C Disj x A C
7 3 6 impbid A = B Disj x A C Disj x B C