Metamath Proof Explorer


Theorem disjeq12d

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses disjeq1d.1 φ A = B
disjeq12d.1 φ C = D
Assertion disjeq12d φ Disj x A C Disj x B D

Proof

Step Hyp Ref Expression
1 disjeq1d.1 φ A = B
2 disjeq12d.1 φ C = D
3 1 disjeq1d φ Disj x A C Disj x B C
4 2 adantr φ x B C = D
5 4 disjeq2dv φ Disj x B C Disj x B D
6 3 5 bitrd φ Disj x A C Disj x B D