Metamath Proof Explorer


Theorem disjeq1d

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypothesis disjeq1d.1 φ A = B
Assertion disjeq1d φ Disj x A C Disj x B C

Proof

Step Hyp Ref Expression
1 disjeq1d.1 φ A = B
2 disjeq1 A = B Disj x A C Disj x B C
3 1 2 syl φ Disj x A C Disj x B C