Metamath Proof Explorer


Theorem disjeq1f

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses disjss1f.1 _ x A
disjss1f.2 _ x B
Assertion disjeq1f A = B Disj x A C Disj x B C

Proof

Step Hyp Ref Expression
1 disjss1f.1 _ x A
2 disjss1f.2 _ x B
3 eqimss2 A = B B A
4 2 1 disjss1f B A Disj x A C Disj x B C
5 3 4 syl A = B Disj x A C Disj x B C
6 eqimss A = B A B
7 1 2 disjss1f A B Disj x B C Disj x A C
8 6 7 syl A = B Disj x B C Disj x A C
9 5 8 impbid A = B Disj x A C Disj x B C