Metamath Proof Explorer


Theorem disjeq2

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjeq2 x A B = C Disj x A B Disj x A C

Proof

Step Hyp Ref Expression
1 eqimss2 B = C C B
2 1 ralimi x A B = C x A C B
3 disjss2 x A C B Disj x A B Disj x A C
4 2 3 syl x A B = C Disj x A B Disj x A C
5 eqimss B = C B C
6 5 ralimi x A B = C x A B C
7 disjss2 x A B C Disj x A C Disj x A B
8 6 7 syl x A B = C Disj x A C Disj x A B
9 4 8 impbid x A B = C Disj x A B Disj x A C