Metamath Proof Explorer


Theorem disjex

Description: Two ways to say that two classes are disjoint (or equal). (Contributed by Thierry Arnoux, 4-Oct-2016)

Ref Expression
Assertion disjex z z A z B A = B A = B A B =

Proof

Step Hyp Ref Expression
1 orcom A = B ¬ z z A z B ¬ z z A z B A = B
2 df-in A B = z | z A z B
3 2 neeq1i A B z | z A z B
4 abn0 z | z A z B z z A z B
5 3 4 bitr2i z z A z B A B
6 5 necon2bbii A B = ¬ z z A z B
7 6 orbi2i A = B A B = A = B ¬ z z A z B
8 imor z z A z B A = B ¬ z z A z B A = B
9 1 7 8 3bitr4ri z z A z B A = B A = B A B =