Metamath Proof Explorer


Theorem disjexc

Description: A variant of disjex , applicable for more generic families. (Contributed by Thierry Arnoux, 4-Oct-2016)

Ref Expression
Hypothesis disjexc.1 x = y A = B
Assertion disjexc z z A z B x = y A = B A B =

Proof

Step Hyp Ref Expression
1 disjexc.1 x = y A = B
2 1 imim2i z z A z B x = y z z A z B A = B
3 orcom A = B ¬ z z A z B ¬ z z A z B A = B
4 df-in A B = z | z A z B
5 4 neeq1i A B z | z A z B
6 abn0 z | z A z B z z A z B
7 5 6 bitr2i z z A z B A B
8 7 necon2bbii A B = ¬ z z A z B
9 8 orbi2i A = B A B = A = B ¬ z z A z B
10 imor z z A z B A = B ¬ z z A z B A = B
11 3 9 10 3bitr4i A = B A B = z z A z B A = B
12 2 11 sylibr z z A z B x = y A = B A B =