Step |
Hyp |
Ref |
Expression |
1 |
|
disjf1.xph |
|
2 |
|
disjf1.f |
|
3 |
|
disjf1.b |
|
4 |
|
disjf1.n0 |
|
5 |
|
disjf1.dj |
|
6 |
|
nfv |
|
7 |
1 6
|
nfan |
|
8 |
|
nfcsb1v |
|
9 |
|
nfcv |
|
10 |
8 9
|
nfel |
|
11 |
7 10
|
nfim |
|
12 |
|
eleq1w |
|
13 |
12
|
anbi2d |
|
14 |
|
csbeq1a |
|
15 |
14
|
eleq1d |
|
16 |
13 15
|
imbi12d |
|
17 |
11 16 3
|
chvarfv |
|
18 |
17
|
ralrimiva |
|
19 |
|
inidm |
|
20 |
19
|
eqcomi |
|
21 |
20
|
a1i |
|
22 |
|
ineq2 |
|
23 |
22
|
ad2antlr |
|
24 |
|
nfcv |
|
25 |
|
nfcsb1v |
|
26 |
|
csbeq1a |
|
27 |
24 25 26
|
cbvdisj |
|
28 |
5 27
|
sylib |
|
29 |
28
|
ad3antrrr |
|
30 |
|
simpllr |
|
31 |
|
neqne |
|
32 |
31
|
adantl |
|
33 |
|
csbeq1 |
|
34 |
|
csbeq1 |
|
35 |
33 34
|
disji2 |
|
36 |
29 30 32 35
|
syl3anc |
|
37 |
21 23 36
|
3eqtrd |
|
38 |
|
nfcv |
|
39 |
8 38
|
nfne |
|
40 |
7 39
|
nfim |
|
41 |
14
|
neeq1d |
|
42 |
13 41
|
imbi12d |
|
43 |
40 42 4
|
chvarfv |
|
44 |
43
|
adantrr |
|
45 |
44
|
ad2antrr |
|
46 |
45
|
neneqd |
|
47 |
37 46
|
condan |
|
48 |
47
|
ex |
|
49 |
48
|
ralrimivva |
|
50 |
18 49
|
jca |
|
51 |
|
nfcv |
|
52 |
51 8 14
|
cbvmpt |
|
53 |
2 52
|
eqtri |
|
54 |
|
csbeq1 |
|
55 |
53 54
|
f1mpt |
|
56 |
50 55
|
sylibr |
|