Metamath Proof Explorer


Theorem disji

Description: Property of a disjoint collection: if B ( X ) = C and B ( Y ) = D have a common element Z , then X = Y . (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses disji.1 x = X B = C
disji.2 x = Y B = D
Assertion disji Disj x A B X A Y A Z C Z D X = Y

Proof

Step Hyp Ref Expression
1 disji.1 x = X B = C
2 disji.2 x = Y B = D
3 inelcm Z C Z D C D
4 1 2 disji2 Disj x A B X A Y A X Y C D =
5 4 3expia Disj x A B X A Y A X Y C D =
6 5 necon1d Disj x A B X A Y A C D X = Y
7 6 3impia Disj x A B X A Y A C D X = Y
8 3 7 syl3an3 Disj x A B X A Y A Z C Z D X = Y