Metamath Proof Explorer


Theorem disji2

Description: Property of a disjoint collection: if B ( X ) = C and B ( Y ) = D , and X =/= Y , then C and D are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses disji.1 x = X B = C
disji.2 x = Y B = D
Assertion disji2 Disj x A B X A Y A X Y C D =

Proof

Step Hyp Ref Expression
1 disji.1 x = X B = C
2 disji.2 x = Y B = D
3 df-ne X Y ¬ X = Y
4 disjors Disj x A B y A z A y = z y / x B z / x B =
5 eqeq1 y = X y = z X = z
6 nfcv _ x X
7 nfcv _ x C
8 6 7 1 csbhypf y = X y / x B = C
9 8 ineq1d y = X y / x B z / x B = C z / x B
10 9 eqeq1d y = X y / x B z / x B = C z / x B =
11 5 10 orbi12d y = X y = z y / x B z / x B = X = z C z / x B =
12 eqeq2 z = Y X = z X = Y
13 nfcv _ x Y
14 nfcv _ x D
15 13 14 2 csbhypf z = Y z / x B = D
16 15 ineq2d z = Y C z / x B = C D
17 16 eqeq1d z = Y C z / x B = C D =
18 12 17 orbi12d z = Y X = z C z / x B = X = Y C D =
19 11 18 rspc2v X A Y A y A z A y = z y / x B z / x B = X = Y C D =
20 4 19 syl5bi X A Y A Disj x A B X = Y C D =
21 20 impcom Disj x A B X A Y A X = Y C D =
22 21 ord Disj x A B X A Y A ¬ X = Y C D =
23 3 22 syl5bi Disj x A B X A Y A X Y C D =
24 23 3impia Disj x A B X A Y A X Y C D =