Metamath Proof Explorer


Theorem disjif

Description: Property of a disjoint collection: if B ( x ) and B ( Y ) = D have a common element Z , then x = Y . (Contributed by Thierry Arnoux, 30-Dec-2016)

Ref Expression
Hypotheses disjif.1 _ x C
disjif.2 x = Y B = C
Assertion disjif Disj x A B x A Y A Z B Z C x = Y

Proof

Step Hyp Ref Expression
1 disjif.1 _ x C
2 disjif.2 x = Y B = C
3 inelcm Z B Z C B C
4 1 2 disji2f Disj x A B x A Y A x Y B C =
5 4 3expia Disj x A B x A Y A x Y B C =
6 5 necon1d Disj x A B x A Y A B C x = Y
7 6 3impia Disj x A B x A Y A B C x = Y
8 3 7 syl3an3 Disj x A B x A Y A Z B Z C x = Y