Metamath Proof Explorer


Theorem disjim

Description: The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 , cf. eldisjim . (Contributed by Peter Mazsa, 3-May-2019) (Revised by Peter Mazsa, 17-Sep-2021)

Ref Expression
Assertion disjim Disj R EqvRel R

Proof

Step Hyp Ref Expression
1 dfdisjALTV4 Disj R y * u u R y Rel R
2 1 simplbi Disj R y * u u R y
3 trcoss y * u u R y x y z x R y y R z x R z
4 2 3 syl Disj R x y z x R y y R z x R z
5 eqvrelcoss3 EqvRel R x y z x R y y R z x R z
6 4 5 sylibr Disj R EqvRel R