Metamath Proof Explorer


Theorem disjin

Description: If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 14-Feb-2017)

Ref Expression
Assertion disjin Disj x B C Disj x B C A

Proof

Step Hyp Ref Expression
1 elinel1 y C A y C
2 1 rmoimi * x B y C * x B y C A
3 2 alimi y * x B y C y * x B y C A
4 df-disj Disj x B C y * x B y C
5 df-disj Disj x B C A y * x B y C A
6 3 4 5 3imtr4i Disj x B C Disj x B C A