Metamath Proof Explorer


Theorem disjin2

Description: If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Assertion disjin2 Disj x B C Disj x B A C

Proof

Step Hyp Ref Expression
1 elinel2 y A C y C
2 1 rmoimi * x B y C * x B y A C
3 2 alimi y * x B y C y * x B y A C
4 df-disj Disj x B C y * x B y C
5 df-disj Disj x B A C y * x B y A C
6 3 4 5 3imtr4i Disj x B C Disj x B A C