Metamath Proof Explorer


Theorem disjiun2

Description: In a disjoint collection, an indexed union is disjoint from an additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses disjiun2.1 φ Disj x A B
disjiun2.2 φ C A
disjiun2.3 φ D A C
disjiun2.4 x = D B = E
Assertion disjiun2 φ x C B E =

Proof

Step Hyp Ref Expression
1 disjiun2.1 φ Disj x A B
2 disjiun2.2 φ C A
3 disjiun2.3 φ D A C
4 disjiun2.4 x = D B = E
5 4 iunxsng D A C x D B = E
6 3 5 syl φ x D B = E
7 6 ineq2d φ x C B x D B = x C B E
8 eldifi D A C D A
9 snssi D A D A
10 3 8 9 3syl φ D A
11 3 eldifbd φ ¬ D C
12 disjsn C D = ¬ D C
13 11 12 sylibr φ C D =
14 disjiun Disj x A B C A D A C D = x C B x D B =
15 1 2 10 13 14 syl13anc φ x C B x D B =
16 7 15 eqtr3d φ x C B E =