Metamath Proof Explorer


Theorem disjiunb

Description: Two ways to say that a collection of index unions C ( i , x ) for i e. A and x e. B is disjoint. (Contributed by AV, 9-Jan-2022)

Ref Expression
Hypotheses disjiunb.1 i = j B = D
disjiunb.2 i = j C = E
Assertion disjiunb Disj i A x B C i A j A i = j x B C x D E =

Proof

Step Hyp Ref Expression
1 disjiunb.1 i = j B = D
2 disjiunb.2 i = j C = E
3 1 2 iuneq12d i = j x B C = x D E
4 3 disjor Disj i A x B C i A j A i = j x B C x D E =