| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjiund.1 |
|
| 2 |
|
disjiund.2 |
|
| 3 |
|
disjiund.3 |
|
| 4 |
|
disjiund.4 |
|
| 5 |
|
eliun |
|
| 6 |
|
eliun |
|
| 7 |
2
|
eleq2d |
|
| 8 |
7
|
cbvrexvw |
|
| 9 |
4
|
3exp |
|
| 10 |
9
|
rexlimdvw |
|
| 11 |
10
|
imp |
|
| 12 |
11
|
rexlimdvw |
|
| 13 |
8 12
|
biimtrid |
|
| 14 |
6 13
|
biimtrid |
|
| 15 |
14
|
con3d |
|
| 16 |
15
|
impancom |
|
| 17 |
5 16
|
biimtrid |
|
| 18 |
17
|
ralrimiv |
|
| 19 |
|
disj |
|
| 20 |
18 19
|
sylibr |
|
| 21 |
20
|
ex |
|
| 22 |
21
|
orrd |
|
| 23 |
22
|
a1d |
|
| 24 |
23
|
ralrimivv |
|
| 25 |
3 1
|
disjiunb |
|
| 26 |
24 25
|
sylibr |
|