Metamath Proof Explorer


Theorem disjiund

Description: Conditions for a collection of index unions of sets A ( a , b ) for a e. V and b e. W to be disjoint. (Contributed by AV, 9-Jan-2022)

Ref Expression
Hypotheses disjiund.1 a = c A = C
disjiund.2 b = d C = D
disjiund.3 a = c W = X
disjiund.4 φ x A x D a = c
Assertion disjiund φ Disj a V b W A

Proof

Step Hyp Ref Expression
1 disjiund.1 a = c A = C
2 disjiund.2 b = d C = D
3 disjiund.3 a = c W = X
4 disjiund.4 φ x A x D a = c
5 eliun x b W A b W x A
6 eliun x b X C b X x C
7 2 eleq2d b = d x C x D
8 7 cbvrexvw b X x C d X x D
9 4 3exp φ x A x D a = c
10 9 rexlimdvw φ b W x A x D a = c
11 10 imp φ b W x A x D a = c
12 11 rexlimdvw φ b W x A d X x D a = c
13 8 12 syl5bi φ b W x A b X x C a = c
14 6 13 syl5bi φ b W x A x b X C a = c
15 14 con3d φ b W x A ¬ a = c ¬ x b X C
16 15 impancom φ ¬ a = c b W x A ¬ x b X C
17 5 16 syl5bi φ ¬ a = c x b W A ¬ x b X C
18 17 ralrimiv φ ¬ a = c x b W A ¬ x b X C
19 disj b W A b X C = x b W A ¬ x b X C
20 18 19 sylibr φ ¬ a = c b W A b X C =
21 20 ex φ ¬ a = c b W A b X C =
22 21 orrd φ a = c b W A b X C =
23 22 a1d φ a V c V a = c b W A b X C =
24 23 ralrimivv φ a V c V a = c b W A b X C =
25 3 1 disjiunb Disj a V b W A a V c V a = c b W A b X C =
26 24 25 sylibr φ Disj a V b W A