Metamath Proof Explorer


Theorem disjlem18

Description: Lemma for disjdmqseq , partim2 and petlem via disjlem19 , (general version of the former prtlem18 ). (Contributed by Peter Mazsa, 16-Sep-2021)

Ref Expression
Assertion disjlem18 A V B W Disj R x dom R A x R B x R A R B

Proof

Step Hyp Ref Expression
1 rspe x dom R A x R B x R x dom R A x R B x R
2 1 expr x dom R A x R B x R x dom R A x R B x R
3 2 adantl A V B W Disj R x dom R A x R B x R x dom R A x R B x R
4 relbrcoss A V B W Rel R A R B x dom R A x R B x R
5 disjrel Disj R Rel R
6 4 5 impel A V B W Disj R A R B x dom R A x R B x R
7 6 adantr A V B W Disj R x dom R A x R A R B x dom R A x R B x R
8 3 7 sylibrd A V B W Disj R x dom R A x R B x R A R B
9 8 ex A V B W Disj R x dom R A x R B x R A R B
10 disjlem17 Disj R x dom R A x R y dom R A y R B y R B x R
11 10 adantl A V B W Disj R x dom R A x R y dom R A y R B y R B x R
12 relbrcoss A V B W Rel R A R B y dom R A y R B y R
13 12 5 impel A V B W Disj R A R B y dom R A y R B y R
14 13 imbi1d A V B W Disj R A R B B x R y dom R A y R B y R B x R
15 11 14 sylibrd A V B W Disj R x dom R A x R A R B B x R
16 9 15 impbidd A V B W Disj R x dom R A x R B x R A R B
17 16 ex A V B W Disj R x dom R A x R B x R A R B