Metamath Proof Explorer


Theorem disjlem19

Description: Lemma for disjdmqseq , partim2 and petlem via disjdmqs , (general version of the former prtlem19 ). (Contributed by Peter Mazsa, 16-Sep-2021)

Ref Expression
Assertion disjlem19 A V Disj R x dom R A x R x R = A R

Proof

Step Hyp Ref Expression
1 disjlem18 A V z V Disj R x dom R A x R z x R A R z
2 1 elvd A V Disj R x dom R A x R z x R A R z
3 2 imp31 A V Disj R x dom R A x R z x R A R z
4 elecALTV A V z V z A R A R z
5 4 elvd A V z A R A R z
6 5 ad2antrr A V Disj R x dom R A x R z A R A R z
7 3 6 bitr4d A V Disj R x dom R A x R z x R z A R
8 7 eqrdv A V Disj R x dom R A x R x R = A R
9 8 exp31 A V Disj R x dom R A x R x R = A R