Metamath Proof Explorer


Theorem disjne

Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion disjne A B = C A D B C D

Proof

Step Hyp Ref Expression
1 disj A B = x A ¬ x B
2 eleq1 x = C x B C B
3 2 notbid x = C ¬ x B ¬ C B
4 3 rspccva x A ¬ x B C A ¬ C B
5 eleq1a D B C = D C B
6 5 necon3bd D B ¬ C B C D
7 4 6 syl5com x A ¬ x B C A D B C D
8 1 7 sylanb A B = C A D B C D
9 8 3impia A B = C A D B C D