Metamath Proof Explorer


Theorem disjor

Description: Two ways to say that a collection B ( i ) for i e. A is disjoint. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypothesis disjor.1 i = j B = C
Assertion disjor Disj i A B i A j A i = j B C =

Proof

Step Hyp Ref Expression
1 disjor.1 i = j B = C
2 df-disj Disj i A B x * i A x B
3 ralcom4 i A x j A x B x C i = j x i A j A x B x C i = j
4 orcom i = j B C = B C = i = j
5 df-or B C = i = j ¬ B C = i = j
6 neq0 ¬ B C = x x B C
7 elin x B C x B x C
8 7 exbii x x B C x x B x C
9 6 8 bitri ¬ B C = x x B x C
10 9 imbi1i ¬ B C = i = j x x B x C i = j
11 19.23v x x B x C i = j x x B x C i = j
12 10 11 bitr4i ¬ B C = i = j x x B x C i = j
13 4 5 12 3bitri i = j B C = x x B x C i = j
14 13 ralbii j A i = j B C = j A x x B x C i = j
15 ralcom4 j A x x B x C i = j x j A x B x C i = j
16 14 15 bitri j A i = j B C = x j A x B x C i = j
17 16 ralbii i A j A i = j B C = i A x j A x B x C i = j
18 1 eleq2d i = j x B x C
19 18 rmo4 * i A x B i A j A x B x C i = j
20 19 albii x * i A x B x i A j A x B x C i = j
21 3 17 20 3bitr4i i A j A i = j B C = x * i A x B
22 2 21 bitr4i Disj i A B i A j A i = j B C =