Metamath Proof Explorer


Theorem disjord

Description: Conditions for a collection of sets A ( a ) for a e. V to be disjoint. (Contributed by AV, 9-Jan-2022)

Ref Expression
Hypotheses disjord.1 a = b A = B
disjord.2 φ x A x B a = b
Assertion disjord φ Disj a V A

Proof

Step Hyp Ref Expression
1 disjord.1 a = b A = B
2 disjord.2 φ x A x B a = b
3 orc a = b a = b A B =
4 3 a1d a = b φ a = b A B =
5 2 3expia φ x A x B a = b
6 5 con3d φ x A ¬ a = b ¬ x B
7 6 impancom φ ¬ a = b x A ¬ x B
8 7 ralrimiv φ ¬ a = b x A ¬ x B
9 disj A B = x A ¬ x B
10 8 9 sylibr φ ¬ a = b A B =
11 10 olcd φ ¬ a = b a = b A B =
12 11 expcom ¬ a = b φ a = b A B =
13 4 12 pm2.61i φ a = b A B =
14 13 adantr φ a V b V a = b A B =
15 14 ralrimivva φ a V b V a = b A B =
16 1 disjor Disj a V A a V b V a = b A B =
17 15 16 sylibr φ Disj a V A