Metamath Proof Explorer


Theorem disjorf

Description: Two ways to say that a collection B ( i ) for i e. A is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypotheses disjorf.1 _ i A
disjorf.2 _ j A
disjorf.3 i = j B = C
Assertion disjorf Disj i A B i A j A i = j B C =

Proof

Step Hyp Ref Expression
1 disjorf.1 _ i A
2 disjorf.2 _ j A
3 disjorf.3 i = j B = C
4 df-disj Disj i A B x * i A x B
5 ralcom4 i A x j A x B x C i = j x i A j A x B x C i = j
6 orcom i = j B C = B C = i = j
7 df-or B C = i = j ¬ B C = i = j
8 neq0 ¬ B C = x x B C
9 elin x B C x B x C
10 9 exbii x x B C x x B x C
11 8 10 bitri ¬ B C = x x B x C
12 11 imbi1i ¬ B C = i = j x x B x C i = j
13 19.23v x x B x C i = j x x B x C i = j
14 12 13 bitr4i ¬ B C = i = j x x B x C i = j
15 6 7 14 3bitri i = j B C = x x B x C i = j
16 15 ralbii j A i = j B C = j A x x B x C i = j
17 ralcom4 j A x x B x C i = j x j A x B x C i = j
18 16 17 bitri j A i = j B C = x j A x B x C i = j
19 18 ralbii i A j A i = j B C = i A x j A x B x C i = j
20 nfv i x C
21 3 eleq2d i = j x B x C
22 1 2 20 21 rmo4f * i A x B i A j A x B x C i = j
23 22 albii x * i A x B x i A j A x B x C i = j
24 5 19 23 3bitr4i i A j A i = j B C = x * i A x B
25 4 24 bitr4i Disj i A B i A j A i = j B C =