Metamath Proof Explorer


Theorem disjors

Description: Two ways to say that a collection B ( i ) for i e. A is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjors Disj x A B i A j A i = j i / x B j / x B =

Proof

Step Hyp Ref Expression
1 nfcv _ i B
2 nfcsb1v _ x i / x B
3 csbeq1a x = i B = i / x B
4 1 2 3 cbvdisj Disj x A B Disj i A i / x B
5 csbeq1 i = j i / x B = j / x B
6 5 disjor Disj i A i / x B i A j A i = j i / x B j / x B =
7 4 6 bitri Disj x A B i A j A i = j i / x B j / x B =